
Example: Verifying Corrected Code
void pass(OnePlaceBuffer<String> b) {

  ... // see above

  

  synchronized(b) {

    if( b.isFull() ) 

  

    print(b.get());

  

  }

} 

perms = { share(b) in ? }   synchronized = {}

perms = { share(b) in ? }   synchronized = { b }

perms = { share(b) in Full }
synchronized = { b }

perms = { share(b) in Empty }
synchronized = { b }

Example: Finding Race Condition
void pass(OnePlaceBuffer<String> b) {

  ... // see above

  

  if( b.isFull() ) 

    print(b.get());

} 

perms = { share(b) in ? }   synchronized = {}

perms = { share(b) in ? }   synchronized = {}

Unique

'get' should not be 
called if buffer is 
empty!

Image courtesy tkgd2007, CC-SA

Modular Typestate Checking in Concurrent Java Programs
Nels E. Beckman

nbeckman@cs.cmu.edu

Problem: Check-then-act Methods in Multithreaded Programs

Certain classes define check-then-act operations:

class OnePlaceBuffer<T> {

  T item = null;

  public synchronized boolean isFull() {...}

  public synchronized void put(T item) {...}

  public synchronized T get() { 

    if(item==null) throw new Empty();

    T result = item; 

    item = null;

    return result;

  }

} 

In the face of concurrent, modifying access, the state of the object may be modified by
another thread:

void pass() {

  final OnePlaceBuffer<String> b = new OnePlaceBuffer<String>();

  b.put("Welcome to OOPSLA!");

  (new Thread() { 

     void run() { if( b.isFull() ) print(b.get()); }}).start();

  if( b.isFull() ) 

    print(b.get());

} 

Can we statically, modularly ensure correct protocol usage?

Solution: Access Permissions Modularly Denote Concurrent Modification

@Share(requires="Full", 
       ensures="Empty")
T get() { ... }

Receiver must have share 
permission, buffer must be 
FULL.

@Pure
@TrueIndicates("Full")
@FalseIndicates("Empty")
boolean isFull() { ... }

Callers need pure 
permission to read 
receiver.

If this method returns 
true, the buffer is full, 
otherwise it's empty.

3 - Static State Tracking
- Associate a reference with the state of the object.
- State changes as methods are called on that reference (using PRE & POST).
- Account for thread interference. Share & Pure references must be 
   associated with the unknown state:

b has Share permission, 
since other thread also 
needs to modify.

http://code.google.com/p/pluralism/

Download the Eclipse plug-in:

Other more familiar examples:
- java.util.Queue (remove/element methods)
- java.nio.channels.Channel (close/isOpen methods)
- javax.sql.rowset.BaseRowSet (initParams/setCommand methods)
- java.util.Iterator (next/hasNext methods)

Solution in a Nutshell
1 - Programmer specifications include Access Permissions (which  
     tell analysis if threads will concurrently modify).
2 - Programmers specify protocol transitions (implicitly, using  
     PRE- and POST-conditions).
3 - We can only track the state for an object statically if Access 
     Permission indicates concurrent modification is impossible.
4 - OR if reference is synchronized!

1 - Access Permissions

2 - Method Specifications

Programmers specify if/how references may be aliased, and 
whether modification can occur. There are 5 permission kinds:

Immutable

Share

me

me

Full

...

them

n

3

2

1

me Pure

me

You may already understand Access Permissions, if you are familiar 
with:
- Boyland's Fractional Permissions [3]
- Separation Logic [4]
- Ownership Types [5]
- Bierhoff's Access Permissions [2] (which this work extends)
( )

- Track synchronized references. Those references can be associated with a 
   known state.

- Internal object synchronization is also enforced. (Ask me for details.)

Share(ref) in FULL

Share(ref) in ???
Race condition! On 
the Empty/Full 
state of the buffer.

Related Work:
[1] N. Beckman, K. Bierhoff, J. Aldrich. Verifying Correct Usage of Atomic Blocks and Typestate. 
OOPSLA 2008.
[2] K. Bierhoff, J. Aldrich. Modular Typestate Checking of Aliased Objects. OOPSLA 2007.
[3] J. Boyland. Checking Interference with Fractional Permissions. SAS 2003.
[4] P. O'Hearn. Resources, Concurrency and Local Reasoning. Theor. Comput. Sci. 2007.
[5] B. Jacobs, F. Piessens, K. Rustan M. Leino, W. Schulte. Safe Concurrency for Aggregate Objects 
with Invariants. SEFM 2005.
( )

4 - Accounting for Mutual Exclusion

Share(ref) in FULL
  where ref is synchronized

me

Permit Concurrent Modification:Forbid Concurrent Modification:

them
them

them

...

them

n

3

2

1

them
them

them

...

them

n

3

2

1

them
them

them

...

them

n

3

2

1

them
them

them

Error! Pre-condition 
unsatisfied! b not 
Full.

Share means other 
modifying refs. exist. 
Simulate interference.

Track b as a 
synchronized ref. 

Reference is not subject 
to concurrent 
modification!

Legend:

Reference associated with permission - 
Other references -
Permission name -
Can modify - 
Can only read - 
Object -

me
themn

P


