
1

Reducing STM Overhead with
Access Permissions

Nels Beckman, Yoon Phil Kim, Sven Stork
and Jonathan Aldrich

2

This Talk…

¡ Transactional memory is great…

l But it has a high overhead

¡ Access permissions

l Tell us about aliasing (unique, immutable, etc.)

¡ So we’ll use them to

l Remove logging, remove synchronization

l Permissions tell us that some objects don’t need
protection or can be protected by other objects

3

Transactional Memory is Great

atomic {

account1.withdraw(amt);

account2.deposit(amt);

} Executes as if
no other
threads

4

Synchronized Blocks are Tougher

synchronized(account1) {

synchronized(account2) {

account1.withdraw(amt);

account2.deposit(amt);

}

}

Atomic w.r.t other
threads synchronized

on
account1

Atomic w.r.t other
threads synchronized

on
account2

5

But it Has High Overhead

¡ Typical implementation:
l Transactional Memory

1. Optimistically run thread

2. Record memory reads and writes

3. Roll back if inconsistent memory view

¡ Our control implementation*:
l Optimistic reads, pessimistic writes

l Object granularity

l In-place updates

l Weak atomicity

* A.-R. Adl-Tabatabai, et al. PLDI 2006.

6

Control Implementation: Details

¡ Thread in Transaction must:

l Own an object to modify it

¡ Before every write, calls into runtime system

l “Open object for writing”

l (Sets ‘owned’ flag, adds to write set, makes a copy)

l Can read an object if owner or unowned

¡ Before every read, calls into runtime system

l “Open object for reading”

l (Checks ‘owned’ flag, adds to read set)

Overhead Legend:
Memory barrier operation
Logging operation

7

Control Implementation: Commits and
Conflict Detection

¡ At TXN commit-time:
l If thread saw consistent view of memory

¡ For each object in write set
l Increase version number

l Reset owner field

¡ Clear read, write sets

l Else perform managed back-off

¡ Reinstall initial value for each modified object

¡ Thread detects inconsistent reads:
l When version # of object in read set < current version
in memory.

8

This Talk…

¡ Transactional memory is great…

l But it has a high overhead

¡ Access permissions

l Tell us about aliasing (unique, immutable,
etc.)

¡ So we’ll use them to

l Remove logging, remove synchronization

l Permissions tell us that some objects don’t need
protection or can be protected by other objects

9

Access Permissions* Tell Us About
Aliasing

¡ Type Annotations on references

l The type of a reference encodes:

¡ Can this object be modified?

¡ Is this object aliased?

l Provided by developer

¡ It’s a type, so it’s checked for consistency

¡ (We use them to modularly verify
typestate in concurrent programs*.)

*Bierhoff, Aldrich. OOPSLA 2007.
*Beckman, Bierhoff, Aldrich. OOPSLA 2008.

10

Access Permission Kinds

¡ Unique, Full, Immutable, Pure, Share

Unique Full
Pure (x N)

Share (x N) Pure (x M)Immutable (x N) Pure (x M)

11

Approach: Optimizing Implementation

¡ Modify our control implementation of
STM

l (A source-to-source translation)

l Remove calls to run-time (open for
read/open for write) when unnecessary

l Sometimes insert new calls for soundness

12

Approach

¡ 4 Rules

Rule 1: Never open Immutable refs for
reading.

l Removes owner check.

l Item not in read set.

13

Approach

¡ 4 Rules

Rule 2: Don’t test-and-set owner when
writing to Unique objects. (But record
value in case of undo.)

14

Approach

¡ 4 Rules

Rule 3: Never open Unique or Full refs for
reading.

l Removes owner check.

l Item not in read set.

15

Approach

¡ 4 Rules

Rule 4: In order to make the above rules
sound:

l Open Share, Pure or Full ref for writing...

l When using permission to a Unique or Full
field of that object.

l Performs test-and-set and adds to write set.

16

Discussion

¡ Opening outer object for writing creates
'zone of protection'

Unique

Stack

r

17

Thread

Discussion

¡ Opening outer object for writing creates
'zone of protection'

Uniquer

18

Some
Object

Discussion

¡ Opening outer object for writing creates
'zone of protection'

Uniquer

Thread

Thread

Sharef_2

f_1 Share

19

Some
Object

Discussion

¡ Opening outer object for writing creates
'zone of protection'

Uniquer

Thread

Thread

Sharef_2

f_1 Share

20

Discussion

¡ Opening outer object for writing creates
'zone of protection'

Some
Object

Uniquer

Thread

Thread

Sharef_2

f_1 Share

Unique

Unique

21

Discussion

¡ Opening outer object for writing creates
'zone of protection'

l Plus

¡ Lower overhead

l Minus

¡ Larger granularity

22

Approach: Recap

1. Immutable: Don't open for read.

2.Unique: Create undo entry but no synch.

3.Unique/Full: Don't open for read.

4.Full/Unique field of Share/Pure/Full
object: Open outer object for writing.

23

Evaluation

¡ Specify permissions & check consistency

l Several small benchmarks

l One larger video game

¡ (Required adding atomic blocks)

¡ Measure benchmark performance with
and without optimization.

24

Results

25

ReadHeavyTest &
WriteHeavyTest

Unique Unique Unique UniqueImm Imm Imm Imm

ReadHeavyTest

0

50

100

150

200

250

300

350

0 200 400 600 800 1000 1200

Length of object chain

A
v

e
ra

g
e

 t
im

e
 (

m
s

)

Unoptimized

Optimized

No Synchronization

WriteHeavyTest

0

100

200

300

400

500

600

700

0 200 400 600 800 1000 1200

Length of object chain

A
v

e
ra

g
e

 t
im

e
 (

m
s

) Unoptimized

Optimized

No Synchronization

26

HashSet (w/ linked buckets)

27

HashSet (w/ linked buckets)

Optimized

HashSet

Linked
List

Linked
List

Linked
List

List
Node

List
Node

List
Node

List
Node

U
n
iq
u
e

U
n
iq
u
e

U
n
iq
u
e

U
n
iq
u
e

S
h
a
re

Share

Sh
ar
e

Threads

Share

Sh
are

Sh
ar
eSh

ar
e

28

HashSet (w/ linked buckets)

Optimized

HashSet

Linked
List

Linked
List

Linked
List

List
Node

List
Node

List
Node

List
Node

U
n
iq
u
e

U
n
iq
u
e

U
n
iq
u
e

U
n
iq
u
e

S
h
a
re

Share

Sh
ar
e

Threads

Share

Sh
are

Sh
ar
eSh

ar
e

29

HashSet (w/ linked buckets)

Optimized, High Contention

HashSet

Linked
List

Linked
List

Linked
List

List
Node

List
Node

List
Node

List
Node

U
n
iq
u
e

U
n
iq
u
e

U
n
iq
u
e

U
n
iq
u
e

U
n
iq
u
e

U
nique

U
ni
qu

e

Threads

Share

Sh
are

Sh
ar
eSh

ar
e

30

HashSet (w/ linked buckets)

Optimized, High Contention

HashSet

Linked
List

Linked
List

Linked
List

List
Node

List
Node

List
Node

List
Node

U
n
iq
u
e

U
n
iq
u
e

U
n
iq
u
e

U
n
iq
u
e

U
n
iq
u
e

U
nique

U
ni
qu

e

Threads

Share

Sh
are

Sh
ar
eSh

ar
e

31

HashSet (w/ linked buckets)

0

500

1000

1500

2000

2500

3000

1 2 4 8

Number of threads

Unoptimized

Optimized

Optmized, High Contention

A
v
e

ra
g

e
 t

im
e
 f

o
r

1
0
0
0
 o

p
s
.

p
e
r

th
re

a
d

32

4InALine

33

4InALine

Optimized

Unoptimized

9.3% Performance Improvement

34

Conclusion

¡ Access permissions:

l Modular description of aliasing

l Tell us certain objects cannot be concurrently
modified or are immutable

l Thus we can reduce TM overhead

¡ We’re not asking everyone to use access
permissions

l But if you’re already verifying typestate…

l Performance improvement is free

