dRAN oo)P

Breaking out of a finite
space

Nels E. Beckman
CMU ISR

Breakout

m On May 13, 1976 Atari Inc. shocked the
world:

m Released the game Breakout

m Features
- Single Player Pong
- Totally sweet
- Destroying Bricks

http://a8.nelsbeckman.com

man.coim

dRkIN@)Y

m 1986 Taito Corp. takes it one step further

m Releases Arkanoid. Truly an epic mega-
game.

m Features

- Gives us the back-story
- Our “paddle” is actually the spaceship “Vaus”

- Power-ups

http://a8.nelsbeckman.com

THE ERA AND TIME OF
THIS STORY IS UNKNOWN.
AFTER THE MOTHERSHIP
"ARKANOID" WAS
DESTROYED, A
SPACECRAFT "VAUS"
SCRAMBLED AWAY FROM
IT. BUT ONLY TO BE
TRAPPED IN SPACE
WARPED BY
SOMEONE........

http://a8.nelsbeckman.com

What followed next...

m Never-ending stream of clones
= Available on many platforms
m Suffered from two basic flaws:
m Fun
= Finite
m Both copied from the original Arkanoid

http://a8.nelsbeckman.com

Why finity sucks

m Physicists have shown (maybe) that
space is infinite.

= Why then are the number of bricks in space
bounded?

= Why are there “levels?”

m dRRANoo

m Corrects these longstanding issues

http://a8.nelsbeckman.com

dRAN 0o)P

m The infinite brick-breaking game
m Broken bricks always reveal more bncks

= Blackberry application

- Allows you to play continuously
- E.g., At work, on subway, in space

s CPU and Memory efficient

= Download now
m http://a8.nelsbeckman.com

Demo

http://a8.nelsbeckman.com

Implementation [TERMINATOR}
m BrickBoard represents ! 1
all bricks ALITIE
= Linked list of byte [briCkS - }
arrays B[L] logicaly
« One node per screen of T l
bricks [bricks : }
- Generated on-demand b
yte[1l3] :
* One byte per row of T l logicaly
bricks (8 bricks each)
EI‘ERMINATOR}

http://a8.nelsbeckman.com

Implementation [TERMINATOR}
m Garbage Collection f \
= We don’t want our heap to S1H |
oyerflow storing empty bricks :
bricks! b 13
= When a brick array at the yte[15] logicalyY
bottom is empty, we collect T l
it topOfEmpty
= EmptyBrick symbolizes all emptyBricks _
empty space up to the first logicalY
non-empty screen-full. T l
m Pathologically heap usage

could grow, but not in
practice http://a8.nelsbeckman.com

Analysis

m s dRkdNoo)P really infinite?
m Heap usage is O(n) w/ some high constant
= Limiting factor:
* Representation of Y axis

« Eventually will overflow
 When does it overflow?

http://a8.nelsbeckman.com

Analysis

m s dRkdNoo)P really infinite?
m Heap usage is O(n) w/ some high constant
= Limiting factor:
* Representation of Y axis

« Eventually will overflow
 When does it overflow?

232 bits + (5 pixels + 50ms) = 497 days

http://a8.nelsbeckman.com

Analysis

m s dRkdNoo)P really infinite?
m Heap usage is O(n) w/ some high constant

= Limiting factor:
* Representation of Y axis
« Eventually will overflow
* When does it overflow?

232 pits + (5 pixels + 50ms)“‘45mg

http://a8.nelsbeckman.com

Analysis

m s dRkdNoo)P really infinite?
m Heap usage is O(n) w/ some high constant

= Limiting factor:
* Representation of Y axis
« Eventually will overflow
* When does it overflow?

232 pits + (5 pixels + 50ms)ﬁbmg

264 bits + (5 pixels + 50ms) = 58 billion years

http://a8.nelsbeckman.com

Analysis

m s dRkdNoo)P really infinite?
m Heap usage is O(n) w/ some high constant

= Limiting factor:
* Representation of Y axis
« Eventually will overflow
* When does it overflow?

232 pits + (5 pixels + 50ms)“‘45mg

264 bits + (5 pixels + 50ms) = 58%IIion years

http://a8.nelsbeckman.com

Conclusion
B RIkAN oo

® The infinite brick-breaking game

m Future Work
m Use Biglinteger instead of 64 bit long

Y axis only limited by heap size

m \Worst-case analysis
» Theoretical bound on heap usage?

http://a8.nelsbeckman.com

