
Probabilistic, Modular and
Scalable Inference of Typestate
Specifications

Nels E. Beckman, CMU/Google Pittsburgh
Aditya V. Nori, Microsoft Research India

Summary
● Anek infers specifications needed to check typestate with
● Plural: sound static typestate checker,

○ requires pre- & post-conditions
○ Specifications time-consuming

● Anek:
○ Assigns and solves probabilistic constraints over

program
■ Approximate, but works well in practice
■ Probabilities act as refinable summaries on methods
■ Scales, because it can be applied iteratively
■ Ease of design, heuristics

Plural*: An Overview

● A sound static typestate
checker for Java programs

class File {
 // Creates an
 // open file
 File();

 // File must be open
 void read();

 void close();
}

*Bierhoff, Aldrich, OOPSLA '07

Plural*: An Overview

● A sound static typestate
checker for Java programs

● Works like a type system
○ Assigns types to

variables that vary
from line to line

○ Requires pre- and
post- types for method
parameters

○ Type includes object
state & aliasing

class File {
 // Creates an
 // open file
 File();

 // File must be open
 void read();

 void close();
}

*Bierhoff, Aldrich, OOPSLA '07

Plural: An Illustration

// pre - f : Open, unique
// post - f : Closed, unique
String readAndClose(File f)
{
 // f : Open, unique
 Log.log("Reading");
 // f : Open, unique
 String s = f.read();
 // f : Open, unique
 f.close();
 // f : Closed, unique
 return s;
}

class File {

 // pre - this : Open, unique
 // post - this : Open, unique
 void read();

 // pre - this : Open, unique
 // post - this : Closed, unique
 void close();

}

Plural: Other Details

● Other permissions:
○ Unique
○ Immutable
○ Shared
○ 1 Writer, Many

Readers

● Fields can have
permissions & state

● Concurrency!
● All sound!

The Challenge

● Adding Plural specifications is labor intensive
○ E.g., days for an API in case studies

● Requires tool & methodology expertise
● Requires detailed program expertise (i.e., aliasing)

Anek (अनेक): Specification Inference
● Input: Program with

annotated API
● Output: Program with all

annotations needed to
check use of API

● Process:
○ Turn program into

permission-flow graph
○ Solve probabilistic

constraints
○ Inferred specification

is the 'likeliest' one
● Benefits:

○ Robust to bugs
○ Easy to summarize

methods, modularity
○ heuristics

● For all program
references, create
permission flow graph

● Graph is almost identical
to data-flow graph.

○ (Parameter permission
implicitly returned)

Permission Graph

// pre - NOT GIVEN
// post - NOT GIVEN
String readAndClose(File f) {
 ...
 String s = f.read();
 ...
}

Permission Graph

Param f
(pre)

Param f
(post)

read()
Arg this
(pre)

read()
Arg this
(post)

Probabilistic Constraints

Initial Probabilities

// pre - NOT GIVEN
// post - NOT GIVEN
String readAndClose(File f) {
 ...
 String s = f.read();
 ...
}

class File {
 ...
 // pre - this: OPEN,
 // unique
 void read();
}

Initial Value
param f pre

Initial Value
read() arg pre

OPEN ? .9999

CLOSED ? .0001

unique ? .9999

immutable ? .0001

share ? .0001

full ? .0001

pure ? .0001

Param f
(pre)

read()
Arg this
(pre)

Probabilistic Constraints

● Given known
specification, how to solve
for unknown?

1. Add constraints to
graph

2. Off-the-shelf solver

Probabilistic Constraints

● Given known
specification, how to solve
for unknown?

1. Add constraints to
graph

2. Off-the-shelf solver

Param f
(pre)

read()
Arg this
(pre)

Probabilistic Constraints

● Given known
specification, how to solve
for unknown?

1. Add constraints to
graph

2. Off-the-shelf solver
● Constraints:

○ Permission rules
○ Heuristics

Param f
(pre)

read()
Arg this
(pre)

Probabilistic Constraints

● Given known
specification, how to solve
for unknown?

1. Add constraints to
graph

2. Off-the-shelf solver
● Constraints:

○ Permission rules
○ Heuristics

Param f
(pre)

read()
Arg this
(pre)

Final Value

OPEN .997

CLOSED .01

unique .997

immutable .01

share .01

full .02

pure .03

Modularity

● Solver is iterative
○ Probabilities become more accurate over time

Modularity

● Solver is iterative
○ Probabilities become more accurate over time

Intermediate Value

OPEN .558

CLOSED .456

unique .677

immutable .33

share .25

full .499

pure .4

Param f
(pre)

Modularity

● Solver is iterative
○ Probabilities become more accurate over time

● Use them as method summaries!
1. Solve for a method,
2. Store just values of signature,
3. Solve other methods,
4. Iterate

● Avoid storing entire graph
● Sliding scale between

 precision and time

Intermediate Value

OPEN .558

CLOSED .456

unique .677

immutable .33

share .25

full .499

pure .4

Param f
(pre)

Evaluation: Training

● Evaluation Procedure:
○ "Train" algorithm on

small benchmarks
○ Evaluate results on

large case study
○ Compare time &

precision to manual

● Training
1. Create a number of

small benchmarks
2. Run Anek
3. Adjust probabilities
4. Iterate until results are

as expected

Evaluation: Iterator API

● Given annotated Iterator
API, infer specifications in
PMD

○ 40kloc
○ 170 calls to Iterator.

next()
○ Initially 45 warnings
○ Case study in Bierhoff

thesis

● Results
○ Bierhoff:

26 annotations in
75 min, resulted in
3 warnings

○ Anek:
31 annotations in
3 min 47 sec, resulted
in
4 warnings

Evaluation: Comparisons

● In paper we attempt to
compare with non-
probabilistic algorithm

● Anek is faster because of
approximative algorithms

Summary
● Plural: sound static typestate checker,

○ requires pre- & post-conditions containing aliasing
permissions

○ Specifications time-consuming
● Anek infers these specifications

○ Assigns and solves probabilistic constraints over nodes
■ Works well in practice
■ Probabilities act as refinable summaries on methods
■ Scales, because it can be applied iteratively
■ Ease of design, heuristics

○ We believe in probabilistic inference!
○ Source available soon!

