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ABSTRACT
It has become abundantly clear that, due to the rise of
multi-core architectures, parallelism is no longer a subject
programmers can ignore with impunity. Unfortunately, pro-
gramming concurrent code is hard. I mean seriously. Some
algorithms can not be parallelized, and more importantly,
some people cannot be bothered learning new programming
constructs. Toward returning to a state of programmer ig-
norance, we present Relentless Parallelism, a programming
methodology that promises full utilization of all CPUs and
cores without additional programmer effort. We explain our
system though an example and formal rewriting rules.

1. INTRODUCTION
The field of computer science is currently in the midst of an
all-out crisis. Moore’s Law, first formalized in 1965 contin-
ues to hold. The number of transistors that can be placed on
a process doubles approximately every two years. However,
we have reached the limit of general-purpose performance
for single CPU systems. Limiting factors, for example heat,
have made it increasingly difficult to utilize all those new
transistors in a single processor. Instead, ICU manufactur-
ers have begun to develop multi-core CPUs, processors that
internally contain multiple distinct processors. Currently
multi-core CPUs are shipping with two and four cores, but
the near future expects to see dozens and even hundreds of
cores per chip. Ladies and gentlemen, the age of parallelism
is upon us!

Unfortunately, the eminent scholars agree: Concurrency is
Really, Really Freaking Hard [1]. Developing applications
that can actually take advantage of many cores is poised
to be the next great challenge of computer science. In this
paper we propose a programming methodology, christened,
Relentless Parallelism, that provides a solution to this loom-
ing problem. Relentless Parallelism promises to keep each
core in a machine busy, even when developing algorithms for
which no natural parallel encoding exists.

This paper proceeds as follows: In Section 2 we explain
relentless parallelism by way of example of a traditionally
hard-to-parallelize algorithm, Huffman decoding. In Sec-
tion 3 we formalize this approach using a series of rewriting
rules. Finally, Section 4 concludes.

2. EXAMPLE: HUFFMAN DECODING
Some algorithms, for example, branch-and-bound search or
optimization, lend themselves naturally to parallel decompo-

sition. Other problems, unfortunately do not. These prob-
lems are particularly worrisome, since they will not be able
to benefit from the coming influx of CPU codes.

String huffmanDecodeByte(Queue<Byte> byte_stream,

DecTreeNode cur_node) {

if( cur_node.getValue() != null ) {

// We are at a leaf node

return cur_node.getValue();

}

else {

if( byte_stream.remove().byteValue() == 0) {

// Go to the left

return

huffmanDecodeByte(byte_stream,

cur_node.getLeftNode());

}

else {

// Go to the right

return

huffmanDecodeByte(byte_stream,

cur_node.getRightNode());

}

}

}

Figure 1: Huffman decoding: Because character
codes have variable lengths, a naive implementation
is difficult to parallelize, for example, using divide-
and-conquer.

Figure 2 is an example of one such algorithm, Huffman de-
coding. Huffman coding is a prefix-free coding scheme, often
used in compression applications. In the scheme, characters
are assigned variable length codes based upon their probabil-
ity of appearance. Since probabilities are allowed to change
from case to case, a tree mapping codes to characters is nec-
essary for decoding. The natural way of decoding a series of
bits is to proceed left or right down the mapping tree (de-
pending on the current bit). When a leaf is reached, that leaf
necessarily specifies exactly one character, since the scheme
is prefix-free.

Unfortunately, because the length of codings is variable, par-
allelizing this implementation is not straightforward. The
normal divide-and-conquer approach fails. If we were to di-
vide the bit stream into multiple sections to give to multiple



cores, a seemingly natural fit, we would be unable to tell a-
priori which size chunks to give to each processor, since one
cannot tell which bits denote the start or end of a character
until decoding has been performed.

Relentless Parallelism assures full utilization of each core
even for algorithms that are not naturally parallelize. Our
technique consists of a series of rewriting rules which add
parallelism to otherwise sequential algorithms. Figure 2
shows the result of this transformation when applied to the
Huffman decoding algorithm. Note that while Figure 2
shows the body of the huffmanDecodeByte, the result of the
transformation can only be seen at the top level of the pro-
gram.

String huffmanDecode(Queue<Byte> byte_stream,

DecTreeNode tree) {

class Parallelizer extends Thread {

public void run() {

for(int i=1, acc=1;

i<this.hashCode();i++,acc*=1 ){}

this.run();

}};

int procs=

Runtime.getRuntime().availableProcessors();

for(int i=0;i<procs-1;i++) {

(new Parallelizer()).start();

}

StringBuffer result = new StringBuffer("");

while( !byte_stream.isEmpty() ) {

result.append(

huffmanDecodeByte(byte_stream, tree));

}

return result.toString();

}

Figure 2: The result of the Relentless Parallelism
transform. Note how the Parallelizer class pro-
duces maximum CPU utilization.

The result of the transform is that previously un-utilized
CPUs are now maximally utilized. The performance im-
provement is characterized as follows:

Utilization0 =
1

|CPUs|

Utilizationrp =
|CPUs|
|CPUs|

3. FORMAL DESCRIPTION
In this section we provide formal rewriting rules for the Re-
lentlessly Parallel programming system. These rules are de-
scribed in Figure 3.

While the majority of the rules are relatively straight-forward,
we would like to draw special attention to the Asynch rule.
We would expect that our natural notion of parallelism would
validate certain rules. One of them is that channels can not

x and g do not alias

[x] := 1||[g] := 2
Concurrent Update

(f, q) : W → X
Morphism

[[(π)]]W
[[p]]W→ [[Q]]X

[[(π)]]X
[[p]]X→ [[Q]]X

π ` P : Q, [[P ]] : [[(π)]]
.→ [[Q]]

Worlds

(h!0) \ h = δ when h /∈ P’s channel

local h in (h!0;P ) = P
Asynch

P (S × S)

P ((S × S)∞)
Pom

Figure 3: The formal rewriting rules for the Relent-
less Parallelism system.

affect the computation of processes that do not use them.
This rule shows that our notion of parallelism is correct.

4. CONCLUSION
The future of programming is an uncertain one. The rise of
multi-core architectures potentially will have vast and far-
reaching consequences. A large majority of programmers
are not familiar or experienced writing parallel code. More-
over, some algorithms are not easily parallelized, even by
experienced coders. Yes it is a scary future. However, in
this paper we have presented a programming methodology,
Relentless Parallelism, that will help to remove much un-
certainty from the future. Our methodology, which we have
formalized with a series of rewriting rules, will allow even
sequential programs to achieve maximum CPU utilization
for all cores and processors.

4.1 Implementation
We have implemented this concept as a plug-in to the Eclipse
Java Development Tools IDE. This plug-in and source code
are available for download at the following address:

http://www.nelsbeckman.com/software.html

While the plug-in itself only works on Java code, rest as-
sured that the monumental contributions we have made are
applicable to any modern programming language and For-
tran 77 [2].
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