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Abstract. A distributed software system’s deployment architecture can have a sig-
nificant impact on the system’s properties. These properties will depend on various
system parameters, such as network bandwidth, frequencies of software component
interactions, and so on. Existing tools for representing system deployment lack sup-
port for specifying, visualizing, and analyzing different factors that influence the
quality of a deployment, e.g., the deployment’s impact on the system’s availability.
In this paper, we present an environment that supports flexible and tailorable speci-
fication, manipulation, visualization, and (re)estimation of deployment architec-
tures for large-scale, highly distributed systems. The environment has been
successfully used to explore large numbers of postulated deployment architectures.
It has also been integrated with a middleware platform to support the exploration of
deployment architectures of actual distributed systems. 
Keywords. Software deployment, availability, disconnection, visualization, envi-
ronment, middleware

1  Introduction 
For any large, distributed system, multiple deployment architectures (i.e., distribu-

tions of the system’s software components onto its hardware hosts, see Figure 1) will
be typically possible. Some of those deployment architectures will be more effective
than others in terms of the desired system characteristics such as scalability, evolvabil-
ity, mobility, and dependability. Availability is an aspect of dependability, defined as
the degree to which the system is operational and accessible when required for use [5].
In the context of distributed environments, where a most common cause of (partial)
system inaccessibility is network failure [17], we define availability as the ratio of the
number of successfully completed inter-component interactions in the system to the
total number of attempted interactions over a period of time. In other words, availabil-
ity in distributed systems is greatly affected by the properties of the network, including
its reliability and bandwidth. 

Maximizing the availability of a given system may thus require the system to be
redeployed such that the most critical, frequent, and voluminous interactions occur
either locally or over reliable and capacious network links. However, finding the actual
deployment architecture that maximizes a system’s availability is an exponentially
complex problem that may take years to resolve for any but very small systems [10].
Also, even a deployment architecture that increases the system’s current availability by
a desired amount cannot be easily found because of the many parameters that influence
this task: number of hardware hosts, available memory and CPU power on each host,
network topology, capacity and reliability of network links, number of software com-
ponents, memory and processing requirements of each component, their configuration
(i.e., software topology), frequency and volume of interaction among the components,
and so forth. A naive solution to this problem would be to keep redeploying the actual
system that exhibits poor availability until an adequate deployment architecture is



found. However, this would be prohibitively expensive. A much more preferable solu-
tion is to develop a means of modeling the relevant system parameters, estimating the
deployment architecture based on these parameters in a manner that produces the
desired (increase in) availability, and assessing the estimated architecture in a con-
trolled setting, prior  to changing the actual deployed system. 

In this paper, we discuss a tailorable environment developed precisely for that pur-
pose. The environment, called DeSi, supports specification, manipulation, visualiza-
tion, and (re)estimation of deployment architectures for large-scale, highly distributed
systems. DeSi allows an engineer to rapidly explore the space of possible deployments
for a given system (real or postulated), determine the deployments that will result in
greatest improvements in availability (while, perhaps, requiring the smallest changes to
the current deployment architecture), and assess a system’s sensitivity to and visualize
changes in specific parameters (e.g., the reliability of a particular network link) and
deployment constraints (e.g., two components must be located on different hosts). We
have provided a facility that automatically generates large numbers of deployment sce-
narios and have evaluated different aspects of DeSi using this facility. DeSi also allows
one to easily integrate, evaluate, and compare different algorithms targeted at improv-
ing system availability [10] in terms of their feasibility, efficiency, and precision. We
illustrate this support by showing the integration of six such algorithms. DeSi also pro-
vides a simple API that allows its integration with any distributed system platform (i.e.,
middleware) that supports component deployment at runtime. We demonstrate this
support by integrating DeSi with the Prism-MW middleware [9]. Finally, while avail-
ability has been our focus to date, DeSi’s architecture is flexible enough to allow
exploration of other system characteristics (e.g., security, fault-tolerance, and so on).

The remainder of the paper is organized as
follows. Section2 defines the problem of
increasing the availability of distributed sys-
tems, and overviews six different algorithms we
have developed for this purpose. Section3
highlights the related work. Section4 discusses
the architecture, implementation, and usage of
the DeSi environment. Evaluation of DeSi is
presented in Section5. The paper concludes
with a discussion of future work.

2  Background
2.1  Problem Description

The distribution of software components
onto hardware nodes (i.e., a system’s software
deployment architecture , illustrated in Figure 1)
greatly influences the system’s availability in
the face of connectivity losses. For example,
components located on the same host will be able to communicate regardless of the
network’s status; components distributed across different hosts might not. However,
the reliability (i.e., rate of failure) of connectivity among the hardware nodes on which

Figure 1. Example deployment 
architecture. A software system 
comprising 40 components is 

deployed onto five hosts. The dotted 
lines represent host interconnectivity; 

the filled lines represent software 
component interaction paths.
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the system is deployed may not be known before the deployment and may change dur-
ing the system’s execution. The frequencies of interaction among software components
may also be unknown. For this reason, the current software deployment architecture
may be ill-suited for the given state of the “target” hardware environment. This means
that a redeployment of the software system may be necessary to improve its availabil-
ity. The critical difficulty in achieving this task lies in the fact that determining a soft-
ware system’s deployment architecture that will maximize its availability for the given
target environment (referred to as optimal deployment architecture) is an exponentially
complex problem. 

In addition to the characteristics of hardware connectivity and software interaction,
there are other constraints on a system’s redeployment, including the available memory
on each network host, the required memory for each software component, the size of
data exchanged between software components, the bandwidth of each network link,
and possible restrictions on component locations (e.g., a component may be fixed to a
selected host, or two components may not be allowed to reside on the same host). Fig-
ure 2 shows a formal model that captures the system properties and constraints, and a
formal definition of the problem we are addressing. The memcomp function captures the
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Figure 2. Formal statement of the problem.



required memory for each component. The frequency of interaction between any pair
of components is captured via the freq function, and the average size of data exchanged
between them is captured via the evt_size function. Each host’s available memory is
captured via the memhost function. The reliability of the link between any pair of hosts
is captured via the rel function, and the network bandwidth via the bw function. Using
the loc function, deployment of any component can be restricted to a subset of hosts,
thus denoting a set of allowed hosts for that component. Using the colloc function, con-
straints on collocation of components can be specified.

The definition of the problem contains the criterion function A, which formally
describes a system’s availability as the ratio of the number of successfully completed
interactions in the system to the total number of attempted interactions. Function f rep-
resents the exponential number of the system’s candidate deployments. To be consid-
ered valid, each candidate deployment must satisfy the four stated conditions. The first
condition states that the sum of memories of the components deployed onto a given
host may not exceed the host’s available memory. The second condition states that the
total volume of data exchanged across any link between two hosts may not exceed the
link’s effective bandwidth, which is the product of the link’s actual bandwidth and its
reliability. The third condition states that a component may only be deployed onto a
host that belongs to a set of allowed hosts for that component, specified via the loc
function. Finally, the fourth condition states that two components must be deployed
onto the same host (or on different hosts) if required by the colloc function. 

2.2  Algorithms
In this section we briefly describe six algorithms we have developed for increasing

a system’s availability by calculating a new deployment architecture. A detailed perfor-
mance comparison of several of these algorithms is given in [10].

Exact Algorithm. This algorithm tries every possible deployment, and selects the one
that has maximum availability and satisfies the constraints posed by the memory, band-
width, and restrictions on software component locations. The exact algorithm guaran-
tees at least one optimal deployment (assuming that at least one deployment is
possible). The complexity of this algorithm in the general case (i.e., with no restrictions
on component locations) is O(kn), where k is the number of hardware hosts, and n the
number of software components. By fixing a subset of m components to selected hosts,
the complexity reduces to O(kn-m). 

Unbiased Stochastic Algorithm. This algorithm generates different deployments by
randomly assigning each component to a single host from the set of available hosts for
that component. If the randomly generated deployment satisfies all the constraints, the
availability of the produced deployment architecture is calculated. This process repeats
a given number of times and the deployment with the best availability is selected. As
indicated in Figure 2, the complexity of calculating the availability for each valid
deployment is O(n2), resulting in the same complexity of the overall algorithm. 

Biased Stochastic Algorithm. This algorithm randomly orders all the hosts and all
the components. Then, going in order, it assigns as many components to a given host as
can fit on that host, ensuring that all of the constraints are satisfied. Once the host is
full, the algorithm proceeds with the same process for the next host in the ordered list



of hosts, and the remaining unassigned components in the ordered list of components,
until all components have been deployed. This process is repeated a desired number of
times, and the best obtained deployment is selected. Since it needs to calculate the
availability for every deployment, the complexity of this algorithm is O(n2).

Greedy Algorithm. This algorithm incrementally assigns software components to the
hardware hosts. At each step of the algorithm, the goal is to select the assignment that
will maximally contribute to the availability function, by selecting the “best” host and
“best” software component. Selecting the best hardware host is performed by choosing
a host with the highest sum of network reliabilities with other hosts in the system, and
the highest memory capacity. Similarly, selecting the best software component is per-
formed by choosing the component with the highest frequency of interaction with other
components in the system, and the lowest required memory. Once found, the best com-
ponent is assigned to the best host, making certain that the four constraints are satisfied.
The algorithm proceeds with searching for the next best component among the remain-
ing components, until the best host is full. Next, the algorithm selects the best host
among the remaining hosts. This process repeats until every component is assigned to a
host. The complexity of this algorithm is O(n3) [10].

Clustering Algorithm. This algorithm groups software components and physical
hosts into a set of component and host clusters, where all members of a cluster are
treated as a single entity. For example, when a component in a given cluster needs to be
redeployed to a new host, all of the cluster’s member components are redeployed. The
algorithm clusters components with high frequencies of interaction, and hosts with
high connection reliability. Clustering can significantly reduce the size of the redeploy-
ment problem; it also has the potential to increase the availability of a system. For
example, connectivity-based clustering in peer-to-peer networks improves the quality
of service by reducing the cost of messaging [15].

Decentralized Algorithm. The above algorithms assume the existence of a central
host with reliable connections to every other host in the system. This assumption does
not hold in a wide range of distributed systems (e.g., ad-hoc mobile networks), requir-
ing a decentralized solution. Our decentralized redeployment algorithm leverages a
variation of the auction algorithm [13], in which each hosts acts as an agent and may
conduct or participate in auctions. Each host’s agent initiates an auction for the rede-
ployment of its local components, assuming none of its neighboring (i.e., connected)
hosts is already conducting an auction. The auction initiation is done by sending to all
the neighboring hosts a message that carries information about a component (e.g.,
name, size, and so on). The agents receiving this message have a limited time to enter a
bid on the component before the auction closes. The bidding agent on a given host cal-
culates an initial bid for the auctioned component, by considering the frequency and
volume of interaction between components on its host and the auctioned component. In
each bid message, the bidding agent also sends additional local information, including
its host’s network reliability and bandwidth with neighboring hosts. Once the auction-
eer has received all the bids, it calculates the final bid based on the received informa-
tion. The host with the highest bid is selected as the winner. If the winner has enough
free memory and sufficient bandwidth to host the auctioned component, then the com-



ponent is redeployed to it and the auction is closed. If this is not the case, then the win-
ner and the auctioneer attempt to find a component on the winner host to be traded
(swapped) with the auctioned component. The complexity of this algorithm is O(k*n).

3  Related Work 
This section briefly outlines several research areas and approaches relevant to our

work on DeSi: software architectures, disconnected operation, software deployment,
software visualization, and visual software environments.

Software architectures provide high-level abstractions for representing structure,
behavior, and key properties of a software system [14]. They are described in terms of
components , which describe the computations and state of a system; connectors , which
describe the rules and mechanisms of interaction among the components; and configu-
rations, which define topologies of components and connectors. DeSi leverages an
architectural model of a distributed system, including its deployment information. In
our approach, a component represents the smallest unit of deployment.

Disconnected operation refers to the continued functioning of a distributed system
in the (temporary) absence of network connectivity. We have performed an extensive
survey of existing disconnected operation approaches, and provided a framework for
their classification and comparison [11]. One of the techniques for supporting discon-
nected operation is (re)deployment, which is a process of installing, updating, or relo-
cating a distributed software system. 

Carzaniga et. al. [1] provide an extensive comparison of existing software deploy-
ment approaches. They identify several issues lacking in the existing deployment tools,
including integrated support for the entire deployment lifecycle. An exception is Soft-
ware Dock [4], which has been proposed as a systematic framework that provides that
support. Software Dock is a system of loosely coupled, cooperating, distributed com-
ponents. It provides software deployment agents that travel among hosts to perform
software deployment tasks. Unlike DeSi, however, Software Dock does not focus on
visualizing, automatically selecting, or evaluating a system’s deployment architecture.

UML [12] is the primary notation for the visual modeling of today’s software sys-
tems. UML’s deployment diagram provides a standard notation for representing a sys-
tem’s software deployment architecture. Several recent approaches extend this notation
via stereotypes [3,7]. However, using UML to visualize deployment architectures has
several drawbacks: UML’s deployment diagrams are static; they do not depict connec-
tions among hardware hosts; and they do not provide support for representing and visu-
alizing the parameters that affect the key system properties (e.g., availability). For
these reasons, we have opted not to use a UML-based notation in DeSi. 

There are several examples of visual software development environments that have
originated from industrial and academic research. For example, AcmeStudio [16] is an
environment for modeling, visualizing, and analyzing software architectures. Environ-
ments such as Visual Studio [8] provide a toolset for rapid application development,
testing, and packaging. In our context, the role of the DeSi environment is to support
tailorable, scalable, and platform-independent modeling, visualization, evaluation, and
implementation of highly distributed systems. For these reasons we opted for using
Eclipse [2] in the construction of DeSi. Eclipse is a platform-independent IDE for Java
with support for plug-ins. Eclipse provides an efficient graphical library (Draw2D) and



accompanying graphical editing framework (GEF), which we leveraged in creating
visual representations of deployment architectures in DeSi. 

4  The DeSi Environment 
In this section, we discuss the architecture, implementation, and typical usage of the

DeSi environment. We focus on the key architecture- and implementation-level deci-
sions and the motivation behind them.

4.1  DeSi’s Architecture
The overall architecture of the DeSi environment adheres to the model-view-con-

troller (MVC) architectural style [6]. Figure 3 depicts the architecture. The centerpiece
of the architecture is a rich and extensible Model, which in turn allows extensions to
the View (used for model visualization) and Controller (used for model manipulation)
subsystems. Each is discussed in more detail below.

Model. DeSi’s Model subsystem is reactive
and accessible to the Controller via a simple
API. The Model currently captures three dif-
ferent system aspects in its three components:
SystemData, GraphViewData , and AlgoRe-
sultData . SystemData  is the key part of the
Model and represents the software system
itself in terms of the parameters outlined in
Section2.1: numbers of components and
hosts, distribution of components across
hosts, software and hardware topologies, and
so on. GraphViewData  captures the informa-
tion needed for visualizing a system’s
deployment architecture: graphical (e.g., color, shape, border thickness) and layout
(e.g., juxtaposition, movability, containment) properties of the depicted components,
hosts, and their links. Finally, AlgoResultData provides a set of facilities for capturing
the outcomes of the different deployment estimation algorithms: estimated deployment
architectures (in terms of component-host pairs), achieved availability, algorithm’s
running time, estimated time to effect a redeployment, and so on.

View. DeSi’s View subsystem exports an API for visualizing the Model. The current
architecture of the View subsystem contains two components—GraphView and Table-
View. GraphView is used to depict the information provided by the Model’s Graph-
ViewData component. TableView is intended to support a detailed layout of system
parameters and deployment estimation algorithms captured in the Model’s SystemData
and AlgoResultData components. The decoupling of the Model’s and corresponding
View’s components allows one to be modified independently of the other. For example,
it allows us to add new visualizations of the same models, or to use the same visualiza-
tions on new, unrelated models, as long as the component interfaces remain stable.

Controller. DeSi’s Controller subsystem comprises four components. The Generator,
Modifier , and AlgorithmContainer manage different aspects of DeSi’s Model and View
subsystems, while the MiddlewareAdapter  component provides an interface to a, possi-

Figure 3. DeSi’s architecture.
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bly third-party, system implementation, deployment, and execution platform (depicted
as a “black box” in Figure 3). The Generator component takes as its input the desired
number of hardware hosts, software components, and a set of ranges for system param-
eters (e.g., minimum and maximum network reliability, component interaction fre-
quency, available memory, and so on). Based on this information, Generator  creates a
specific deployment architecture that satisfies the given input and stores it in Model
subsystem’s SystemData  component. The Modifier component allows fine-grain tun-
ing of the generated deployment architecture (e.g., by altering a single network link’s
reliability, a single component’s required memory, and so on). Finally, the Algorithm-
Container component invokes the selected redeployment algorithms (recall
Section2.2) and updates the Model’s AlgoResultData. In each case, the three compo-
nents also inform the View subsystem that the Model has been modified; in turn, the
View pulls the modified data from the Model and updates the display.

The above components allow DeSi to be used to generate automatically and manip-
ulate large numbers of hypothetical deployment architectures. The MiddlewareAdapter
component, on the other hand, provides DeSi with the same information from a run-
ning, real system. MiddlewareAdapter’s Monitor subcomponent captures the runtime
data from the external MiddlewarePlatform  and stores it inside the Model’s System-
Data component. MiddlewareAdapter’s Effector  subcomponent is informed by the
Controller’s AlgorithmContainer component of the calculated (improved) deployment
architecture; in turn, the Effector  issues a set of commands to the MiddlewarePlatform
to modify the running system’s deployment architecture. The details of this process are
further illuminated in Section4.2.3.

4.2  DeSi’s Implementation
DeSi has been implemented in the Eclipse platform [2] using Java 1.4. DeSi’s

implementation adheres to its MVC architectural style. In this section, we discuss
(1)the implementation of DeSi’s extensible model, (2) the visualizations currently sup-
ported by DeSi, and (3) its capabilities for generating deployment scenarios, assessing
a given deployment, manipulating system parameters and observing their effects, and
estimating redeployments that result in improved system availability.

4.2.1 Model Implementation
The implementations of the SystemData and AlgoResultData components of

DeSi’s Model are simple: each one of them is implemented as a single class, with APIs
for accessing and modifying the stored data. For example, AlgoResultData’s imple-
mentation provides an API for accessing and modifying the array containing the esti-
mated deployment architecture, and a set of variables representing the achieved
availability, algorithm’s running time, and estimated time to change a given system
from its current to its new deployment. 

The GraphViewData component contains all the persistent data necessary for main-
taining the graphical visualization of a given deployment architecture. It keeps track of
information such as figure shapes, colors, placements, and labels that correspond to
hardware hosts, software components, and software and hardware links. In our imple-
mentation of GraphViewData, each element of a distributed system (host, component,
or link) is implemented via a corresponding Figure class that maintains this informa-
tion (e.g., each host is represented as a single instance of the HostFigure class). Com-



ponents and hosts have unique identifiers, while a link is uniquely identified via its two
end-point hosts or components. 

The GraphViewData  component’s classes provide a rich API for retrieving and
modifying properties of individual components, hosts, and links. This allows easy runt-
ime modification of virtually any element of the visualization (e.g., changing the line
thickness of links). Furthermore, the information captured inside GraphViewData is
not directly tied to the properties of the model captured inside SystemData . For exam-
ple, the color property of HostFigure  can be set to correspond to the amount of avail-
able memory or to the average reliability with other hosts in the system. 

4.2.2 View Implementation
The TableView component of DeSi’s View subsystem displays the Deployment

Control Window, shown in Figure 4. This window consists of five sections, identified
by panel names: Input, Constraints, Algorithms, Results, and Tables of Parameters. 

The Input section allows the user to specify different input parameters: (1) numbers
of components and hosts; (2) ranges for component memory, frequency and event size;
and (3) ranges for host memory, reliability and bandwidth. For centralized deployment
scenarios we provide a set of text fields for specifying the properties of the central host.
The Generate button on the bottom of this panel results in the (random) generation of a
single deployment architecture that satisfies the above input. Once the parameter val-

Figure 4. DeSi’s Deployment Control Window



ues are generated, they are displayed in the Tables of Parameters section, which will be
discussed in more detail below.

The Constraints  section allows specification of different conditions for component
(co-)location: (1) components that must be deployed on the same host, (2) components
that may not be deployed on the same host, and (3) components that have to be on spe-
cific host(s). The three buttons on the right side of the Constraints panel correspond to
these conditions. Consecutive clicks on the Use Mapping  button, located on the bottom
right side of the panel, enable and disable the above three buttons.

The Algorithms section allows the user to run different redeployment estimation
algorithms by clicking the corresponding algorithm’s button. There are three provided
options for running the algorithms (depicted in the drop-down menu at the top of the
Algorithms section in Figure 4): (1) Just run , which runs the algorithm and displays the
result in the Results panel, (2) Run and preview, which runs the algorithm displays the
results both in the Results panel and in the graphical view (discussed further below),
and (3) Run and effect, which, in addition to actions described in option 2, also updates
SystemData to set the current deployment to the output of the selected algorithm. The
latter action can be reversed by clicking on the Revert to previous deployment button. 

We have provided a benchmarking capability to compare the performance of vari-
ous algorithms. The user can specify the number of times the algorithms should be
invoked. Then, the user triggers via the Benchmark button a sequence of automatic ran-
dom generations of new deployment architectures and executions of all algorithms.

The Results  section displays the outcomes of different algorithms. For each algo-
rithm, the output consists of (1) a new mapping of components to hosts, (2) the sys-
tem’s achieved availability, (3) the running time of the algorithm, and (4) the estimated
time to effect the new deployment. Section 4.2.3 details the calculation of these results.

Finally, the Table of Parameters  section provides an editable set of tables that dis-
play different system parameters. The user can view and edit the desired table by click-
ing on the appropriate tab from the tab list. The editable tables support fine-tuning of
system parameters. 

The goals of the GraphView component of DeSi’s View subsystem were to (1)
allow users to quickly examine the complete deployment architecture of a given sys-
tem, (2) provide scalable and efficient displays of deployment architectures with large
numbers of components and hosts, and (3) be platform independent. To this end we
used the Eclipse environment’s GEF plug-in, which consists of a library for displaying
different shapes, lines, and labels and a facility for runtime editing of the displayed
images. 

GraphView provides a simple API for displaying hosts, components, and links. For
example, displaying two connected hosts requires two consecutive calls of the create-
Host method, followed by the createH2HLink method. Figure 5 illustrates a deploy-
ment architecture with 100 components and 8 hosts. Network connections between
hosts are depicted as solid lines, while dotted lines between pairs of hosts denote that
some of the components on the two respective hosts need to communicate, but that
there is no network link between them. Clearly, the existence of dotted lines indicates a
decrease in the system’s availability. Therefore, just by observing the number of dotted
lines one can reason about the quality of a given deployment architecture.



 For systems with large numbers of hosts and components, visualizing the system
and its connectivity becomes a challenge. For this reason, GraphView supports zoom-
ing in and out (see Figure 5), and provides the ability to “drag” hosts and components
on-screen, in which case all relevant links will follow them. For the same reason, we do
not display connections between components residing on different hosts. If such con-
nections exist, the components will have thicker borders. A thin border on a component
denotes that it does not communicate with remote components. 

GraphView  has several other features that allow users to easily visualize and reason
about a given deployment architecture. A user can get at-a-glance information on any

Figure 5. Two zooming levels in DeSi’s 
graphical visualization of a deployment 

architecture with 8 hosts and 100 
components.

a) b)
Figure 6. Detailed view of (a) a single host and (b) a single component in DeSi.



of the hosts and components in the system. Selection of a single graphical object dis-
plays its information in the status bar at the bottom of the window (see Figure 5). The
displayed information can easily be changed or extended through simple modifications
to GraphView to include any (combination) of the information captured in the System-
Data component. Detailed information about a host or component can be displayed by
double-clicking on the corresponding graphical object. The DetailWindow for a host,
shown in Figure 6a, displays the host’s properties in the status bar, the components
deployed on the host, the host’s connections to other hosts, and the reliabilities and
bandwidths of those connections. Similarly, the DetailWindow for a component, shown
in Figure 6b, displays the component’s properties and its connections to other compo-
nents. 

4.2.3 Controller Implementation 
The implementation of DeSi Controller’s Generator  component provides methods

for (1) generating random deployment problems, (2) producing a specific (initial)
deployment that satisfies the parameters and constraints of a generated problem, and
(3) updating DeSi Model’s SystemData class accordingly. This capability allows us to
rapidly compare the different deployment algorithms discussed in Section2.2. Genera-
tor is complemented by the class implementing the Controller’s Modifier component.
Modifier  provides facilities for fine-tuning system parameters (also recall the discus-
sion of editable tables in Section4.2.2), allowing one to assess the sensitivity of a
deployment algorithm to specific parameters in a given system. 

Each deployment algorithm in DeSi Controller’s AlgorithmContainer component
is encapsulated in its own class, which extends the AbstractAlgorithm class. AbstractA-
lgorithm  captures the common attributes and methods needed by all algorithms (e.g.,
calculateAvailability, estimateRedeploymentTime, and so on). Each algorithm class
needs to implement the abstract method execute, which returns an object of type Algo-
rithmResult . A bootstrap class called AlgorithmInvoker provides a set of static methods
that instantiate an algorithm object and call its execute  method. The localization of all
algorithm invocations to one class aids DeSi’s separation of concerns and enables easy
addition of new (kinds of) algorithms.

Finally, DeSi provides the Middleware Controller component which can interface
with a middleware platform to capture and display the monitoring data from a running
distributed system, and invoke the middleware’s services to enact a new deployment
architecture. This facility is independent of any particular middleware platform and
only requires that the middleware be able to provide monitoring data about a distrib-
uted system and an API for modifying the system’s architecture. DeSi does not require
a particular format of the monitoring information or system modification API; instead,
the goal is to employ different wrappers around the Middleware Controller component
for each desired middleware platform. 

As a “proof of concept,” we have integrated DeSi with Prism-MW, an event-based,
extensible middleware for highly distributed systems [9]. Prism-MW provides support
for centralized deployment. It provides pluggable monitoring capabilities. It also pro-
vides a special-purpose Admin component residing on each host. The Admin compo-
nent is in charge of gathering the monitoring information, sending it to the central host,
and performing changes to the local subsystem by migrating components. Prism-MW



also provides a Deployer component residing on the central host. The Deployer com-
ponent controls the redeployment process, by issuing events to remote Admin  compo-
nents to perform changes to their local configurations. We have wrapped DeSi’s
Middleware Controller as a Prism-MW component that is capable of receiving events
with the monitoring data from Prism-MW’s Deployer component, and issuing events
to the Deployer component to enact a new deployment architecture. Once the monitor-
ing data is received, Middleware Controller invokes the appropriate API to update
DeSi’s Model and View subsystems. This results in the visualization of an actual sys-
tem, which can now be analyzed and its deployment improved by employing different
algorithms. Once the outcome of an algorithm is selected, Middleware Controller
issues a series of events to Prism-MW’s Deployer  component to update the system’s
deployment architecture.

5  Discussion 
The goal of DeSi is to allow visualization of different characteristics of software

deployment architectures in highly distributed settings, the assessment of such archi-
tectures, and possibly their reconfiguration. In this section we evaluate DeSi in terms of
four properties that we believe to be highly relevant in this context: tailorability, scal-
ability, efficiency, and ability to explore the problem space. Each property is discussed
in more detail below.

5.1  Tailorability
DeSi is an environment intended for exploring a large number of issues concerning

distributed software systems. As discussed above, to date we have focused on the
impact a deployment architecture has on a system’s availability. However, its MVC
architecture and component-based design allow it in principle to be customized for
visualizing and assessing arbitrary system properties (e.g., security, fault-tolerance,
latency). All three components of DeSi’s Model subsystem (SystemData, GraphView-
Data, and AlgoResultData) could be easily extended to represent other system proper-
ties through the addition of new attributes and methods to the corresponding classes.
Another aspect of DeSi’s tailorability is the ability to add new Views or modify the
existing ones. Clear separation between DeSi View and Model components makes cre-
ating different visualizations of the same model easy. DeSi also enables quick replace-
ment of the Control components without modifying the View components. For
example, two Control components may use the GraphView’s API for setting the thick-
ness of inter-host links differently: one to depict the reliability and the other to depict
the available bandwidth between the hosts. Finally, DeSi also provides the ability to
interface with an arbitrary middleware platform.

5.2  Scalability
DeSi is targeted at systems comprising many components distributed across many

hosts. DeSi supports scalability in the (1) size of its Model, (2) scalability of its Views,
and (3) scalability of the Controller’s algorithms. Models of systems represented in
DeSi can be arbitrarily large since they are centralized and capture only the subset of
system properties that are of interest. Another aspect of DeSi’s scalability are Control-
ler’s algorithm implementations: with the exception of the ExactAlgorithm , all of the
algorithms are polynomial in the number of components. We have tested DeSi Model’s



scalability by generating random models with hundreds of hosts and thousands of com-
ponents, and Controller’s scalability by successfully running the algorithms on these
models. Finally, the combination of the hierarchical viewing capabilities of the DeSi
View subsystem (i.e., system-wide view, single host view, single component view), the
zooming capability, and the ability to drag components and hosts to view their connec-
tivity, enables us to effectively visualize distributed systems with very large numbers
of components and hosts.

5.3  Efficiency
A goal of this work was to ensure that DeSi’s scalability support does not come at

the expense of its performance. As a result of developing the visualization components
using Eclipse’s GEF, DeSi’s support for visualizing deployment architectures exhibits
much better performance than an older version that was implemented using Java Swing
libraries. We also enhanced the performance of the GraphView component by repaint-
ing only parts of the screen that correspond to the modified parts of the model. As dis-
cussed in Section4.2.2, we also provide three options for running the redeployment
algorithms. This enables us to customize the overhead associated with running the
algorithms and displaying their results. Finally, while the efficiency and complexity of
the redeployment algorithms is not the focus of this paper, with the exception of the
exact algorithm, all of the provided algorithms run in polynomial time [10].

5.4  Exploration Capabilities
The nature of highly distributed systems, their properties, and the effects of their

parameters on those properties is not well understood. This is particularly the case with
the effect a system’s deployment architecture has on its availability [10]. The DeSi
environment provides a rich set of capabilities for exploring deployment architectures
of distributed systems. DeSi provides side-by-side comparison of different algorithms
along multiple dimensions (achieved availability, running time, and estimated rede-
ployment time). It also supports tailoring of the individual parameters of the system
model, which allows quick assessment of the sensitivity of different algorithms to these
changes. Next, DeSi provides the ability to tailor its random generation of deployment
architectures to focus on specific classes of systems or deployment scenarios (e.g., by
modifying desired ranges of certain parameters such as minimum and maximum fre-
quency of component interactions). DeSi supports algorithm benchmarking by auto-
matically generating, assessing, and comparing the performance of different algorithms
for a large number of randomly generated systems. DeSi’s extensibility enables rapid
evaluation of new algorithms. Finally, through its MiddlewareAdapter, DeSi provides
the ability to visualize, reason about, and modify an actual system.

6  Conclusion
A distributed software system’s deployment architecture can have a significant

impact on the system’s properties. In order to ensure the desired effects of deployment,
those properties need to be assessed. They will depend on various system parameters
(e.g., reliability of connectivity among hosts, security of links between hosts, and so
on). Existing tools for visualizing system deployment (e.g., UML [12]) depict only dis-
tributions of components onto hosts, but lack support for specifying, visualizing, and
analyzing different factors that influence the quality of a deployment. 



This paper has presented DeSi, an environment that addresses this problem by sup-
porting flexible and tailorable specification, manipulation, visualization, and (re)esti-
mation of deployment architectures for large-scale, highly distributed systems. The
environment has been successfully used to explore large numbers of postulated deploy-
ment architectures. It has also been integrated with the Prism-MW software architec-
ture implementation and deployment platform to support the exploration of
deployment architectures of actual distributed systems. 

Our experience to date with DeSi has been very promising. At the same time, it has
suggested a number of possible avenues for further work. We plan to address issues
such as tailoring DeSi for use in exploring other non-functional system properties (e.g.,
security), improving existing DeSi visualizations (e.g., planarizing the graphs of hosts
and components), creating new views (e.g., visually displaying the performance of dif-
ferent algorithms), and integrating DeSi with other middleware platforms (e.g., differ-
ent implementations of CORBA). 
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