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Abstract
While transactional memory makes concurrent program-
ming more convenient, software transactional memory (STM)
is typically associated with a high overhead. In this work we
present a technique for reducing overhead associated with
STM usingaccess permissions, annotations on method pa-
rameters describing how references may alias. This infor-
mation, which is statically checked for correctness, can be
used to eliminate synchronization and logging operations.
We have implemented this technique and show that it im-
proves performance on a number of benchmarks.

Categories and Subject Descriptors D.1.3 [Concurrent
Programming]; D.4.6 [Performance]

General Terms Performance, Verification

Keywords Transactional Memory, Optimization, Permis-
sions

1. Introduction
Transactional memory [12], or TM, is a promising ap-
proach to decreasing the difficulty of writing multi-threaded,
shared-memory applications. TM systems provide program-
mers with a new primitive, the atomic block, whose simple
semantics dictates that code inside the block must be runas
if no other threads we running concurrently (Figure 1). This
primitive is typically implemented in an optimistic fashion,
wherein threads run concurrently but have the effects of
their memory writes “un-done” if they were able to observe
a view of memory inconsistent with atomic semantics.

Unfortunately, there are some obstacles to the wide-
spread adoption of this approach. One obstacle is the rel-
atively large overhead that existing transactional memory
systems impose over standard lock-based synchronization.
This overhead is primarily due to required instrumentation,
as certainlogging and synchronization operations must be
performed on every (or at least many) memory accesses.

In this paper we propose an optimization ofsoftware
transactional memory or STM [10]. Our optimization will
make use of access permissions [4], static type annotations
associated with program references which modularly de-
scribe the ways in which the referred object may be aliased

void xfer(Account a1, Account a2, int amt) {

atomic: {

a1.withdraw(amt);

a2.deposit(amt);

}

}

Figure 1. A very simple use of the atomic block in a Java-
like language. Note that this snippet uses Java’s labeled
block in order to maintain compatible syntax, as does our
implementation.

by other program references.1 In this optimization, for cer-
tain references, such as those that point to immutable ob-
jects, we will be able to remove all synchronization and
logging operations. For other references, such as those that
uniquely point to the object to which they refer, we will be
able to remove all synchronization overhead associated with
accessing the object (because the object was in fact thread-
local) or we will be able to treat that object as part of the
protection domain of another object (because the object was
transitively accessible from a thread-shared object). In each
case, our optimization reduces the overhead of STM.

This paper makes the following contributions:

1. We present a technique for the compile-time removal of
unnecessary synchronization and logging in STM imple-
mentations based on access permissions, an existing alias
control mechanism.

2. We have implemented this optimization in AtomicPower,
a source-to-source implementation of STM based on
AtomJava [15] and work by Adl-Tabatabai et al. [1].
AtomicPower takes a program written in Java using STM
primitives and translates it into an optimized, thread-safe
pure Java program.

3. We have evaluated our optimizations on a number of
benchmarks, including an open-source video game appli-
cation. In general performance is improved, and in cer-

1 Readers familiar with Ownership type systems [8] or Fractional Permis-
sion systems [6] will immediately recognize many features of access per-
missions.



tain cases greatly improved, ranging from 10% to 40%
improvement.

Since access permissions were designed to aid in the
verification of behavioral properties of object-oriented pro-
grams, we claim that programmers who are already using
this system to verify concurrent programs will receive per-
formance improvement “for free,” without any additional
specification burden.

We proceed as follows: Section 2 describes access per-
missions and their use in lightweight behavioral verifica-
tion. Section 3 first describes our implementation of software
transactional memory and then describes our permission-
based optimizations to that implementation. In Section 4 we
describe our evaluation procedure, our benchmarks, and the
results of our optimization. Finally, we discuss related work
and conclude.

2. Background: Access Permissions
Access permissions are a static means of controlling alias-
ing for the purposes of program verification. The system
we use was proposed by Bierhoff and Aldrich [4] for the
purposes of statically verifying correct usage of object pro-
tocols, also known as typestate [18]. (Their system in turn
was inspired by Boyland [6].) Access permissions are sim-
ilar to other alias control schemes (e.g., ownership [8]) be-
cause they restrict the ways in which objects can be aliased.
In recent work [3] we extended typestate verification using
access permissions to concurrent programs that use atomic
blocks as a means of mutual exclusion. That work was the
inspiration for our permission-based optimizations.

While a full description of the verification system is out-
side the scope of this paper, in this section we describe ac-
cess permissions as they are used to annotate concurrent pro-
grams.

Access permissions are predicates that are statically as-
sociated with program references. These predicates tell us
how the reference with which they are associated can be
aliased and modified. They must be provided by the pro-
grammer at method boundaries, and as class invariants,
but can otherwise be automatically tracked as they flow
through method bodies. A program annotated with access
permissions encodes the sort of information provided by
whole-program alias analysis without actually performing
any whole-program analysis.

There are five kinds of access permissions, each of which
denotes a different pattern of aliasing for the references with
which they are associated. Here we describe each in turn. In
Figure 2 we recap all five.

Unique permission is associated with a reference that points
to an object that can only be reached through that single
reference. The reference can be used to read and modify
the object. This is also known as a linear reference [19].

Other Refs. May:
This Ref. May: None Read Write

Read unique immutable pure
Write unique full share
Figure 2. A recap of the five permission types.

Immutable permission is associated with a reference that
points to an object that many references may point to, but
of those references none can be used to modify the object.

Full permission is associated with a reference that can be
used to read and modify the object to which it points.
Other references may simultaneously exist that point to
the same object, but those other references cannot be used
to modify the object.

Share permission is associated with a reference that can
both read and modify the object to which it points. How-
ever, ashare permission indicates that any number of
other references may simultaneously point to the same
object, and some of those references could be used to
modify the object.

Pure permission is associated with a reference that can be
used to read an object. It differs fromimmutable because
it indicates that other modifying references to the same
object, namelyfull or share, may exist.

Programmers specify method formals and the receiver
as requiring a certain kind of access permission. Then, at
call sites for that method, our static checker will determine
whether or not the proper permission is available on the ref-
erences that are passed as actuals to the method. Because
certain permissions kinds are in a sense, “stronger” than oth-
ers, it is often possible to call a method that requires a dif-
ferent permission for a parameter than is available on the
argument, using the “splitting” rules of our system. For in-
stance, aunique permission on an argument will satisfy a
method that requires afull permission for the corresponding
parameter, since knowing that a reference is theonly refer-
ence in a program pointing to some object is more powerful
than knowing a reference is the onlymodifying reference.

The following example shows a class meant to hold pa-
rameters for a multi-threaded benchmark. It is annotated
with access permissions:

class BenchmarkParams {

@Perm(ensures="unique(this)"))

BenchmarkParams () { ... }

@Unique void setTimeLimit (int t) { ... }

@Imm int getTimeLimit () { ... }

}

The specification indicates that the constructor returns the
sole reference (unique) to the new object. The benchmark
time limit can be changed as long as the caller has the only
reference (unique) to the object. In order to query the limit



using the getTimeLimit method, a client needs just a reading
permission (immutable).

In the following code the call to createThread will suc-
ceed statically. It will consume animmutable permission,
which can be satisfied with the availableunique permission,
but it will not return it (as noted in its specification), pre-
sumably so that the permission can be stored in the field of a
newly created thread. This leaves animmutable in the call-
ing context, subsequently enabling a call to getTimeLimit,
but not to setTimeLimit:

void createThread (@Imm(returned=false)

BenchmarkParams ) { ... }

BencharkParams p = new BenchmarkParams ();

p.setTimeLimit (2000); // Okay, has unique(p)

createThread (p); // Consumes immutable(p)

p.getTimeLimit (); // Okay, has immutable(p)

p.setTimeLimit (500); // Error! need unique(p)

3. Approach
We implemented STM as a source-to-source translation,
from Java with certain labeled statements delineating atomic
blocks (those labeled asatomic) to pure Java. We then used
static access permission annotations to remove unnecessary
synchronization and logging. Before describing our opti-
mization, we briefly discuss our initial implementation of
STM in order to show what kinds of synchronization and
logging operations are normally necessary. Our optimiza-
tion is able to reduce overhead on accesses toimmutable
andunique references, and to a lesser extent,full references.

3.1 Base Implementation

Our implementation of software transactional memory is a
combination of AtomJava [15] and work by Adl-Tabatabai
et al. [1].2 AtomJava is a source-to-source implementation
of STM that uses a pessimistic synchronization strategy. It
takes programs written in “Java plus atomic blocks” and
outputs pure Java source code. We used AtomJava as a
starting point, but rewrote much of the internals and run-time
system in order to use the synchronization strategy proposed
by Adl-Tabatabai et al. [1]. While we have attempted to
make our implementation as fast as possible, we do not claim
excellent absolute performance. Rather, we claim that we
can improve relative performance by reducing the number
of synchronization and logging operations required. It is
our belief that access permissions could help optimize many
different implementations of STM, but that the optimization
might be slightly different with other design choices.

Our implementation uses an optimistic read, pessimistic
write strategy with object granularity. Each object is either
owned, or unowned. Unowned objects can be read at will by

2 This work was initially developed as part of Yoon Phil Kim’s master’s
thesis [16].

any transaction, but in order to write an object, a transaction
must be the owner of that object, and it remains the owner
until the end of the transaction. Writers modify objects in
place, and roll back the state of the object in case of transac-
tion abort. We use a version numbering scheme in order to
detect possibly-inconsistent reads.

The source-to-source translation process begins by rewrit-
ing every object to (transitively) extend TxnObject which
holds a TxnRecord for storing object meta-data. The Txn-
Record contains both an owner field, telling transactions
whether or not the object is owned and by whom, and a ver-
sion number. Every thread in the program is rewritten to ex-
tend TxnThread. TxnThread itself extends java.lang.Thread,
but holds a TxnDescriptor object which contains additional
data related to a transaction’s status. TxnDescriptor holds
three thread-local hash maps, one each for the read set, write
set and undo log.

Our implementation must also rewrite atomic blocks and
memory reads inside transactions. Like AtomJava, we cre-
ate two copies of each method, the original version and a
version to be called inside of atomic contexts. An atomic
block is rewritten as a loop that initially calls txnStart, set-
ting the current transaction’s status to ‘active.’ The loop
contains a try-catch block whose finally block attempts to
commit the transaction, continuing the loop if the trans-
action commit fails. Field reads (and writes) in an atomic
context are replaced with calls to txnOpenObjectForRead
(or Write), which obtains the object’s TxnRecord and calls
txnOpenRecordForRead (or Write), whose implementations
are shown in Figure 3. Note that the isOwned method has
cost equivalent to a volatile read, and setOwner must per-
form an atomic test-and-set. logWriteSet performs a whole
object copy and a hash table insert, while logReadSet per-
forms just a hash table insert.

We use a polite contention manager [13], and in order
to avoid infinitely running transactions due to inconsistent
reads we validate the read set by inserting a call to vali-
dateReadSet on back edges and method entries. This per-
forms validation once every 1000 calls. Arrays are synchro-
nized on TxnRecords held by a global array, since we cannot
force them to extend a super-class of our choosing. Our run-
time system uses the array’s hash code in order to index into
the global array. This will occasionally cause access to dis-
joint arrays to be perceived as contention.

Finally, and in order to make our evaluation more realis-
tic, our implementation performs some basic optimizations
on both the base case and the optimized case. We do not
open the receiver object for reading on an access to a final
field. Additionally, we perform a basic intra-procedural flow
analysis to remove redundant read and write open operations
on the same object.

3.2 Optimization

In this section we describe a technique for statically opti-
mizing the performance of programs annotated with access



static void txnOpenTxnRecordForRead (TxnRecord rec) {

TxnDescriptor txnDesc = getCurrentThreadTxnDescriptor ();

if ( txnDesc.writeSetContains (rec) ) return;

do { if (!rec.isOwned()) {

logReadSet(rec, txnDesc);

return;

}

txnHandleContention (rec);

} while (true);

}

static void txnOpenTxnRecordForWrite (LoggableObject obj, TxnRecord rec) {

TxnDescriptor txnDesc = getCurrentThreadTxnDescriptor ();

if ( txnDesc.writeSetContains (rec) ) return;

do { if (!rec.isOwned()) {

if (rec.setOwner(null, txnDesc)) {

logWriteSet (obj, rec, txnDesc);

return;

}

}

txnHandleContention (rec);

} while (true);

}

Figure 3. The implementation of the methods txnOpenTxnRecordForRead() and txnOpenTxnRecordForWrite() in the STM
run-time.

permissions. This is the primary contribution of this work.
In this section we describe the optimization process, while
in Section 3.3 we discuss some of the implications of this
process.

Our optimization occurs during source to source transla-
tion, as in-transaction reads and writes are encountered. We
use the access permission associated with the object refer-
ence to determine if wereally have to open the object for
reading or writing. The reason that we open an object for
reading or writing is to protect it against concurrent access
by multiple threads. So if an object is not thread-shared, then
it does not need to be opened for reading or writing. Fortu-
nately for us, in our earlier work [3], we showed that access
permissions can soundly approximate whether or not a given
reference points to a thread-shared object.

Our approximation works by assuming that whenever the
access permission on a reference indicates that another ref-
erence may exist, those references are reachable from other
threads, making the object thread-shared. For instance, we
assume any object pointed to by ashare reference is thread-
shared, assuming that those other references, wherever they
may be, are held by other threads. This gets interesting when
we talk aboutunique permissions. Sinceunique permission
means that no other references to an object can exist, we
take this to mean that the object is not thread-shared. In this
case, our optimization will not open the object for reading
or writing. The first three rules of our optimization (naively)
assume that the access permission alone is a sound approxi-
mation of thread-sharing:

Rule 1 References ofimmutable permission will never be
opened for reading. Since no thread will change their value,
there is no need to protect a thread from concurrent modifi-
cation.

Rule 2 When writing to the fields of aunique object, it is
not necessary to open that object for writing since no other
thread can concurrently access the object. However, it is nec-
essary to log the initial value of the object as the transac-
tion still may be rolled back. Therefore, when writing to ob-
jects of this permission, a call to the txnOnlyLogWriteObject
method is inserted, which logs a copy of the object, but does
not perform an atomic test and set on its owner field.

Rule 3 Neither objects ofunique nor full permission ever
need to be opened for reading. Again, since no other threads
have modifying permission to objects of these permission
kinds, there is no need to protect our thread from concurrent
modification.

Of course an object that is uniquely referenced by the
field of a thread-shared object becomes thread-shared itself!
If our optimization just consisted of these first three rules,
these thread-shared objects would not be protected from
concurrent modification.

Therefore, we add one additional rule to ensure that our
optimization is sound. The net result will be that either aunique object wasactually thread-local, or that the uniquely
referenced object has become part of the synchronization
domain of another thread-shared object.



Rule 4 Becauseunique andfull permissions can be reached
through fields of other thread-shared objects, we require that
any share, full, or pure object be opened for writing before
any method is called on aunique or full field of that object.

The first and third rules will lead to a reduction in the
number of synchronizing operations in the resulting trans-
lated program, since no check will be performed to query
the “owned” status of that object. These rules will also lead
to a reduction in the number of logging events, since their
consistency will not need to be later checked. While logging
is a thread-local operation, it does require inserting an item
into a hash table. The second rule will help to eliminate the
synchronization overhead of an atomic test-and-set, whichis
required when acquiring ownership of an object.

Note that references associated withfull permission still
must be opened for writing, as otherpure references may be
used to concurrently read the same object.

In Figure 4 we have illustrated the effect of our optimiza-
tion on thecontains method of a linked list. This linked
list is used for the buckets of a hash set, which we use as
a benchmark and describe in detail in Section 4. Since the
list is singly-linked, each element refers to the next with
a unique reference. The receiver of the contains method
is annotated with the@Imm permission, since it does not
perform mutation, but this is okay since theunique per-
mission can be used to satisfy theimmutable requirement.
The primary difference between the optimized and unopti-
mized versions of this method are the removal of the call to
__aj_get_value(...) in the optimized version. This call
would normally openthis for reading, but since we have
a unique permission to the list node, we do not require syn-
chronization. Also note that subsequent reads on fields of
the receiver do not perform synchronization in either case,
because of our basic optimizations.

In the next section we further discuss the ramifications of
our changes.

3.3 Discussion

We have presented a technique for optimizing the perfor-
mance of STM programs using access permissions that will
potentially reduce overhead on thread-local, immutable ob-
jects, and other objects that are used in restricted aliasing
patterns. However, there are some more subtle points that
deserve further discussion.

The first thing to note is that while we can reduce or even
eliminate the overhead associated with reading and writing
references ofimmutable or unique permission, those are the
sorts of operations that, by themselves, do not need to be
performed inside of an atomic block at all. Moreover, our
permission checker [3] already tells a programmer statically
which memory accesses must and need not be performed
inside of a transaction, based on the same static access per-
missions (essentially obviating the need for strong atomic-
ity). The point is that because of this, we mainly expect to

@Imm boolean contains(@Pure Object item) {

if( this.value.equals(item) )

return true;

else if( next == null ) return false;

else return next.contains(item);

}

boolean contains_atomic (Object item)

throws TransactionException {

txnPeriodicValidation ();

if (UniqueLinkedList .

__aj_get_value (this).equals_atomic (item))

return true;

else if (next == null) return false;

else return next.contains_atomic (item);

}

boolean contains_atomic (Object item)

throws TransactionException {

txnPeriodicValidation ();

if (this.value.equals_atomic (item))

return true;

else if (next == null) return false;

else return next.contains_atomic (item);

}

Figure 4. The contains method of a linked list, before
translation (top), and as translated for use in atomic contexts
without (middle) and with (bottom) optimization.

get performance improvements out of unique and immutable
objects that are “captured” inside of atomic blocks because
of actions being performed on other, thread-shared objects.

The next thing to note continues the point made in the
previous section: objects referenced throughunique refer-
ence are not necessarily thread-local. Rule 4 ensures that
even if a uniquely referenced object is thread-shared, it will
still be protected from concurrent access, namely because
all threads that will have accessed it will already have had
to open the referring object for writing, which can only be
performed by one thread at a time. This creates a situation
illustrated in Figure 5. But because many objects can be pro-
tected through ownership of one outer object, there is the
potential to greatly reduce overhead in some programs.

Occasionally, because of Rule 4, our optimization may
insert “open for write” operations that were not otherwise
necessary. Therefore, we must ask if the potential increasein
contention is worth the reduction in overhead. Recent work
has suggested that overhead, not contention, is the primary
cause of poor performance in STM implementations [9]. For
programs that generally access disjoint regions of memory,
the increased granularity will hopefully not matter. We spec-
ified our HashSet benchmark (Section 4) twice in order to
observe the effect of this increased granularity, and saw that,
as expected, overhead was lowered but contention increased
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Figure 5. unique andfull fields accessed via a thread-shared
object are protected since the outer object has necessarily
been opened for writing. The single owner thread is free to
modify inner,unique objects at will, as other threads attempt
to acquire ownership of the outer object.

as the number of threads increased. Interestingly, the perfor-
mance is not dramatically worse even in such a program with
artificially high contention.

Finally, it is interesting to point out that sometimes with
our system, a programmer’s specification goals may conflict
with his performance goals. When writing a method specifi-
cation for the purposes of behavioral verification, a program-
mer generally wants to write the weakest pre-condition pos-
sible. This will make the method useful in the largest num-
ber of contexts. In our system, this means requiring as weak
a permission as possible (e.g.,pure or share) to the param-
eters of a method. However, when performing optimization,
since we must assume conservatively that references ofpure
or share permissions are being thread-shared, this may re-
sult in under-performance when a stronger permission was
available. For example, if the programmer hasunique per-
mission to an object, they would likepure method calls on
that object to not require any synchronization. This is a nat-
ural use for method specialization, since, statically, we can
identify the points at which a caller has a stronger permission
than strictly required by the method. Creating a copy of that
method with reduced synchronization would help improve
program performance. While we have not implemented this
specialization feature in AtomicPower, we plan to do so in
the future. Additionally, some of our benchmarks have been
“hand-specialized” in order to take advantage of this ob-
servation. This process consisted simply of creating several
copies of the same method with slightly different specifica-
tions.

4. Evaluation
In order to evaluate our technique, we have used our op-
timizations on a suite of annotated benchmarks of varying

sizes and we compared those results to our baseline imple-
mentation. In this section we describe the results of these
benchmarks. We also describe our experiences specifying
these concurrent programs, and report on interesting pat-
terns.

4.1 Methodology

For the purposes of evaluation, we chose several bench-
marks, consisting of micro-benchmarks,popular STM bench-
marks, and an open source Java video game. For programs
that were not originally written to use atomic blocks, we re-
placed existing synchronization constructs. Then, we used
access permissions to specify as many of the methods and
classes as possible, in order to describe the program’s alias-
ing behavior. This required a good understanding of each
program’s run-time behavior. After specification, we used
NIMBY [3], our static permission checker, to check the con-
sistency of our specifications. This process verifies that the
access permissions we wrote were actually correct, with re-
spect to the aliasing behavior of the program. While the
primary goal of NIMBY3 is to check typestate behavioral
properties, we did not specify any for the purposes of this
experiment. Figure 6 describes the number and type offull,unique and immutable permissions that were used in each
benchmark, since these permissions are the ones that pro-
vide performance benefit. For the largest benchmarks, we
did not specify all of the references in the system. Specifi-
cally, we ignored methods and objects that were never used
in transactions and we did not specify methods ofpure orshare permission that did not interact with other permissions
in meaningful ways. Since the default reference annotation
is share in our system, this is sound.

After permission verification, we took each benchmark
and ran it through AtomicPower, our source-to-source trans-
lator, with and without our permission optimizations. For
each benchmark, our optimization removed a different num-
ber of calls into the STM run-time system. Figure 6 describes
the number of open for read and write calls that were stati-
cally removed for each benchmark, as well as the number of
additional open for write calls that were inserted. Note that
in general the removal and insertion of STM operations at
different locations in the source program will have different
effect on overall benchmark performance.

In general our STM implementation is not sound if it is
not used to translate every file in an application. However,
some of our benchmarks used classes from the Java standard
library. While many of these classes could be translated from
source, some could not due to limitations in our source to
source translation (primarily due to use of anonymous inner
classes and some features of Java generics). In a few cases
we created new implementations which could more readily
be translated by AtomicPower. In such cases we attempted
to be as faithful as possible to the original implementation.

3 http://code.google.com/p/pluralism/

http://code.google.com/p/pluralism/


Benchmark
Refs. Annotated Open Calls Removed (Total) Extra OWimmutable unique full read write Calls Inserted

4InALine 124 23 1 41 (289) 8 (100) 1
HashSet 0 4 0 1 (16) 0 (5) 1
ListSet 0 5 0 4 (19) 2 (18) 0
ReadHeavy 2 2 0 1 (1) 0 (0) 0
WriteHeavy 0 4 0 0 (0) 1 (1) 0

Figure 6. Number of references annotated with helpful access permissions, and the number of open for read/write calls this
removed. The last column lists the number of additional openfor write calls inserted due to rule 4.

Each benchmark has its own measure of performance,
usually elapsed time or number of operations performed. We
ran each with and without optimizations for 1000 runs (un-
less otherwise noted), varying the number of threads when
appropriate.4

We will now briefly describe each benchmark in turn.
ReadHeavyTest and WriteHeavyTest: In order to get a
feel for the potential of our optimization, we created two
synthetic benchmarks, ReadHeavyTest and WriteHeavyTest.
Both programs access objects inside of a transaction, but do
so with only a single thread. ReadHeavyTest creates a chain
of objects, each of which refers to the next withimmutable
permission, and then inside of a transaction reads from fields
of every object in the chain. The entire process is performed
1000 times inside of a loop, and was designed to illustrate
the effect of removing an open for read operation. Write-
HeavyTest is the same, except that each object in the chain
refers to the next object with aunique permission, and dur-
ing the transaction each object in the chain is modified. This
benchmark was designed to give us a feel for the amount of
overhead that can be reduced when removing the ownership
acquire operation, but retaining the object copy operation.
For comparison purposes we also ran the same two experi-
ments without any synchronization.
4InALine: We wanted to evaluate our optimizations on a
real program representative of common multi-threaded OO
programs. For this purpose, we chose 4InALine5, a GUI-
based video game that is a clone of the board game Con-
nect Four. We chose this program because it was relatively
large (5471 loc in 62 classes), it was well designed and doc-
umented, and seemed at first glance to contain a number of
immutable and thread-local objects that were being accessed
inside of critical regions. 4InALine stores shared game data
in a server object that is accessed by client threads, one per
each player in the game, and by a GUI update thread. These
threads will each occasionally make a copy of the current

4 Note that all of our performance numbers come from executingprograms
on a Dell PowerEdge 2900 III with 2 Quad Core Intel Xeon X5460 proces-
sors, running at 3.16GHz (1333MHz FSB) with 2x6MB of L1 cache, 32 GB
of RAM, and running Linux 2.6.23.1-001-PSC and Sun’s Java SERun-time
Environment (build 1.6.0_07-b06).
5 http://code.google.com/p/fourinaline/

game board, which they use to either calculate a next move,
or to determine the visual representation of the board.

4InALine required some modification before it could be
used as a benchmark. We replaced synchronized blocks with
atomic blocks (57) and a retry statement (1). This program
uses JFrame, a Swing framework class which allows users
to create GUI windows. We created a wrapper class that
would be introduced as an intermediary by AtomicPower.
This wrapper ensures that user subclasses of JFrame will be
properly synchronized without requiring us to translate large
portions of the Swing framework. In practice, this translation
strategy worked well, resulting in a program without flicker-
ing or obvious synchronization defects.

For the experiment, we ran 4InALine in a deterministic
AI versus AI game on the weakest difficulty level, and gath-
ered the elapsed time from game start to completion.
ListSet: ListSet is an STM benchmark from a paper by
Herlihy et al. [14]. It is an implementation of a List. This
benchmark is interesting for our purposes because it creates
local objects inside of transactions that escape from their
allocation context and are later accessed, but are not shared
with other threads. Note that each node doesnot have aunique pointer to the next node, as one might expect of a
singly-linked list. Therefore the entire backbone of the list is
annotated withshare permissions. For our benchmark, we
created a number of threads and then measured the total
number of insert/remove/contains operations those threads
could cumulatively execute during two seconds. Each thread
performed 30% updating operations.
HashSet: We created our own implementation of a hash
set for benchmarking purposes. In this implementation, the
hash set holds an array of bucket nodes that each point to a
linked list. Inside the linked list, each node points to the next
with unique permission. The outer object, however, points
to each bucket node withshare permission so that it will
not become a contention bottleneck. In order to evaluate the
effects of Rule 4, which may occasionally insert extra open
for write operations, we also specified a “high contention”
version of the same program. In this version, the outer hash
set object points to its buckets withunique permission. This
will eliminate synchronization internal to the data structure,
but will effectively serialize access to it, since the outer-

http://code.google.com/p/fourinaline/


most object will alternatively owned by each transaction,
preventing all other transactions from accessing the set. Both
versions pass the permission checker as specified. For this
benchmark, we created a number of threads and made each
perform 100000 operations, 30% of which were updating.
We measured the elapsed time.

4.2 Results and Discussion

The results of our benchmarks are shown in Figures 7
through 10. In general, our optimizations improved perfor-
mance, although to varying degrees. Most improvements can
be attributed tounique andimmutable references.
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Figure 7. The results from running ReadHeavyTest and
WriteHeavyTest (less is better).

The results from the ReadHeavyTest and the Write-
HeavyTest (Figure 7), show that there is potentially a great
deal to be gained by optimizing access to unique and im-
mutable objects. In particular, removing the open for read
operation provides a big benefit, since this makes a memory
read essentially free. The synchronization-free benchmark is
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Figure 8. Histogram of completion times for 4InALine (left
is better, x axis begins at 1000).
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Figure 9. Mean completion times for the HashSet bench-
mark for different numbers of threads, using 30% modifying
operations (less is better). Note the large standard deviation
for the unoptimized case.

always faster even for the read-only case, since there is some
overhead associated with starting and committing the 1000
transactions that are performed during each run.

The performance of ListSet (Figure 10) was improved
because it uses a number of thread-local objects that hap-
pen to be trapped inside of atomic blocks. ListSet creates a
Neighborhood object on each look-up. This object escapes
its allocation context, but is immediately used by the caller,
which is still inside a transaction, to determine the resultof
a search. This process happens once per operation.

However, in our system, objects do not have to be thread-
local to be optimized. Uniquely referred objects can still be
part of a thread-shared data structure, such as the bucket lists
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2 seconds in the ListSet benchmark, using 30% modifying
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in the HashSet benchmark (Figure 9). Because the random-
ized inserts, contains and remove operations generally hash
to different buckets, threads do not contend, and therefore
the overhead that is saved because the entire linked list is
being locked once at the head results in better performance.
Furthermore, note the large standard deviation for the un-
optimized case. We speculate that this is due to transaction
aborts, which are generally expensive. Because the buckets
are locked at the front, aborts are extremely rare in the opti-
mized case, but can occur in the unoptimized case, where a
thread may traverse the list, have it modified behind it, and
then be forced to abort since its read set is now out of date.
For our high contention specification, as expected, overall
performance is better for smaller numbers of threads, since
almost all synchronization operations will be removed, but
degrades as more threads attempt to access the data struc-
ture and the single lock becomes a bottleneck.

4InALine (Figure 8) benefits from its use of a number of
immutable objects. There are many pieces inside the model
(which itself is thread-shared and mutated) that are never
modified, and therefore numerous reading methods, such as
calls to equals, are sped up. Also, 4InALine uses a number of
immutable collections, such as a cache for storing lines that
are known to be winning lines. Each line is implemented
as an immutable list of immutable pieces, although to take
full advantage of immutability, we had to perform hand-
specialization, copying certain methods and re-specifying
them as taking an immutable receiver.

5. Related Work
There has been much previous research attempting to opti-
mize the performance of software transactional memory and
to reduce its overhead.

For instance, work has been done in statically identifying
objects that were allocated inside of a transaction using a
whole program analysis [11, 1]. Shpeisman et al. [17] use a
whole-program alias analysis in order to identify objects that
are never accessed inside of a transaction, and additionally
perform a dynamic escape analysis in order to find thread-
local objects. Aldrich et al. [2], Blanchet [5] and Choi et al.
[7] also perform an inter-procedural analysis in order to
identify synchronization operations that can be removed,
although not in a TM context.

Our work is different in a few ways. First, all of our op-
timizations are performed statically. Most importantly, our
approach is modular, and uses only intra-procedural analy-
sis. This is feasible because of the static access permissions
which are provided by programmers, and checked for cor-
rectness. This may make it easier for our approach to scale
to very large applications. Moreover, our approach is consis-
tent with a language that uses dynamically linked libraries.
As long as the code that we link against has been anno-
tated, or we can do so externally, the optimizations we per-
form on our own code will be sound. Our analysis is some-
times more precise than existing approaches, because the de-
signer’s intent is encoded in the annotations. For example,
objects stored exclusively as fields of Thread objects can
indeed be treated as thread-local. In earlier work, Shpeis-
man et al. [17] noted that fields of a thread could not neces-
sarily be optimized as thread-local, since a new thread ob-
ject is always reachable from its spawning context. This re-
duced their opportunities for optimization. In our approach,
the start method on a thread can be specified as consuming
the entireunique permission to the thread object. Figure 11
shows just such an example. This prevents the spawning
thread from modifying or reading the newly created thread,
thus providing us with another opportunity for optimization.

6. Conclusion
In this paper we presented a static technique for reducing
the overhead of software transactional memory based on ac-
cess permission annotations. Access permissions are a mod-
ular system for describing the ways in which a particular
reference may alias other references. This information al-
lows us to remove unnecessary synchronization and logging
operations that traditionally require a whole-program analy-
sis. Moreover, access permissions have been used for behav-
ioral specification of programs that use atomic blocks [3],
so that programmers willing to use our behavioral specifica-
tions will get performance increase without additional effort.
We have implemented our technique in a tool called Atom-
icPower, and showed improved performance on a number of
benchmarks.
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class ConsumerThread {

@Unique(returned=false)

void start() { super.start(); }

@Unique void run() {

atomic: {

Object i = this.input.get();

doWork(i);

this.output.put(i);

}

}

}

void spawnConsumer () {

ConsumerThread t =

new ConsumerThread ();

t.start();

//Cannot access thread object

}

Figure 11. The start method of the ConsumerThread
class consumes the entireunique permission produced at
construction-time. As a result, ConsumerThread need not be
opened when reading and writing its fields inside an atomic
block.
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