
Probabilistic, Modular and Scalable
Inference of Typestate Specifications

Nels E. Beckman
Carnegie Mellon University

nbeckman@cs.cmu.edu

Aditya V. Nori
Microsoft Research India
adityan@microsoft.com

Abstract
Static analysis tools aim to find bugs in software that correspond
to violations of specifications. Unfortunately, for large and com-
plex software, these specifications are usually either unavailable or
sophisticated, and hard to write.

This paper presents ANEK, a tool and accompanying methodol-
ogy for inferring specifications useful for modular typestate check-
ing of programs. In particular, these specifications consist of pre
and postconditions along with aliasing annotations known as access
permissions. A novel feature of ANEK is that it can generate pro-
gram specifications even when the code under analysis gives rise to
conflicting constraints, a situation that typically occurs when there
are bugs. The design of ANEK also makes it easy to add heuristic
constraints that encode intuitions gleaned from several years of ex-
perience writing such specifications, and this allows it to infer spec-
ifications that are better in a subjective sense. The ANEK algorithm
is based on a modular analysis that makes it fast and scalable, while
producing reliable specifications. All of these features are enabled
by its underlying probabilistic analysis that produces specifications
that are very likely.

Our implementation of ANEK infers access permissions spec-
ifications used by the PLURAL [5] modular typestate checker for
Java programs. We have run ANEK on a number of Java bench-
mark programs, including one large open-source program (approx-
imately 38K lines of code), to infer specifications that were then
checked using PLURAL. The results for the large benchmark show
that ANEK can quickly infer specifications that are both accurate
and qualitatively similar to those written by hand, and at 5% of the
time taken to manually discover and hand-code the specifications.

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]: Statistical methods

General Terms Algorithms, Verification

Keywords aliasing, inference, object protocol, ownership, per-
mission, typestate, specification

1. Introduction
Developing correct and reliable software is a hard problem, one
that is supported by various analysis tools for improving software

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’11, June 4–8, 2011, San Jose, California, USA.
Copyright c© 2011 ACM 978-1-4503-0663-8/11/06. . . $10.00

Figure 1. The iterator protocol.

quality and reliability. Even though these tools are largely auto-
mated, many require user-provided specifications that describe the
property or protocol that the code under analysis is required to sat-
isfy [2, 5, 8, 11] and this greatly limits their application in practice.
However, writing good specifications is a hard and laborious task
that also requires some degree of expertise on the codebase under
analysis.

In this paper we present ANEK1, a tool and an accompanying
methodology for inferring specifications necessary for modular
typestate [18] checking. Given an API annotated with typestate
specifications by its developers, ANEK allows users of that API
to quickly infer the specifications needed in their code in order to
modularly check API conformance.

Specifically, ANEK infers access permission specifications [5],
specifications which, in addition to encoding abstract states of
objects, also encode aliasing information, which allows for sound
modular checking. Our inference algorithm is novel because it
combines both the logical facts relating to permission creation and
destruction as well as heuristics describing likely specifications,
and does so using a scheme of probabilistic constraints. The result
is an inference that is faster, generates better specifications and
scales better than more traditional approaches.

To illustrate our point, consider an example. A programmer
wants to ensure correct use of Java’s iterator API, modeled in
Figure 1 and annotated by its developers with access permission
specifications in Figure 2. Its specification says that in order to call
the next method, the receiver object must be known to be in the
“HASNEXT” abstract state, which a client can be sure the object is
in if the hasNext method returns true. The Collection interface
is also specified. It says that when the iterator method is called,
a unique (unaliased) iterator will be returned in the “ALIVE” state.2

Our hypothetical programmer wants to ensure that her simple
spreadsheet application, partially given in Figure 3, is always using

1 Anek is the Hindi word meaning plural.
2 The “ALIVE” state in the PLURAL methodology is the root of the state
hierarchy, so this statement is equivalent to saying the iterator is not in any
state of interest.

211

1 interface Iterator <T> {
2 @Spec(requires="full(this) in HASNEXT",
3 ensures="full(this) in ALIVE")
4 T next();
5
6 @Spec(requires="pure(this) in ALIVE",
7 ensures="pure(this)")
8 @TrueIndicates("HASNEXT")
9 @FalseIndicates("END")

10 boolean hasNext();
11 }
12
13 interface Collection <T> extends Iterable <T> {
14 @Spec(ensures="unique(result) in ALIVE")
15 Iterator <T> iterator();
16 // Continues...
17 }

Figure 2. Iterator and collection interfaces annotated with access
permission specifications.

the iterator API correctly, and wants to use the PLURAL modular
typestate checker [5] to do so, but does not want to spend time
writing specifications. In this program, a Row class acts as an
abstraction of a spreadsheet row, and wraps an instance of the
Collection class. Notably, the createColItermethod on line 4
simply returns the result of the collection’s iterator method. A
number of uses of the column iterator in this program are similar
to its use in the copy method, line 12, where the iterator’s next
method is called in a loop, and only when calls to the hasNext
method return true. However, one use of the column iterator occurs
in a test method, testParseCSV on line 22, which tests the ability
to input data in CSV format. In this use, the next method is
immediately called on iterator returned by the createColIter
method (line 25). The reasoning is that, assuming the program
is implemented correctly, the parseCSVRow method will return a
non-empty row for the given inputs.

Here, let us concentrate on the specification to be inferred for
the return value of the createColItermethod (line 4). Traditional
approaches would have difficulty inferring specifications here be-
cause different uses of the createColIter method give rise to
conflicting constraints. The use of the method on line 25 implies
that the returned value must be in the “HASNEXT” state. At the
same time, the existing specification of the iterator method in-
dicates that the iterator is returned in the “ALIVE” state, and this
is consistent with its use in copy and all of the similar uses not
shown. A traditional analysis would generate two constraints con-
taining conflicting information, satisfaction of these constraints
with a Boolean constraint solver would be impossible, and no spec-
ification would be produced.

In contrast, our approach builds logical constraints on top of
probabilities, so that conflicting facts can coexist. ANEK will
generate a constraint at line 25 saying that the return value of
createColItermust be in the “HASNEXT” state with high prob-
ability, and will generate constraints at line 5, line 16 and all similar
sites saying that the return value must be in the “ALIVE” state with
high probability. The evidence for the “HASNEXT” state is out-
weighed by the evidence against it, and the “ALIVE” abstract state
will be chosen for the return value. Such an inferred specification
may cause a typestate checker to issue a warning on line 25.

While it may seem somewhat strange to infer specifications that
are only mostly correct, and may indeed lead to analysis warnings,
in practice [6] some number of false positives are inevitable when
analyzing any large program, and practically-motivated program-
mers still desire to verify as much of their code as is possible. Note

1 class Row {
2 Collection <Integer> entries;
3
4 Iterator<Integer> createColIter() {
5 return entries.iterator();
6 }
7 void add(int val){...}
8 // Continues...
9 }

10
11 // Many similar uses of iterator exist
12 Row copy(Row original) {
13 Iterator<Integer> iter =
14 original.createColIter();
15 Row result = new Row();
16 while(iter.hasNext()) {
17 result.add(iter.next());
18 }
19 }
20
21 @Test
22 void testParseCSV() {
23 Row r1 = parseCSVRow("1,2,3,4");
24 Row r2 = parseCSVRow("4,6,7,8");
25 int sum = r1.createColIter().next() +
26 r2.createColIter().next();
27 assert(sum,5);
28 }

Figure 3. An application using the iterator API for which specifi-
cations are needed.

also that the PLURAL static analysis is sound, so there are no safety
concerns due to the approximative nature of the inference.

As a further benefit, ANEK’s system of probabilistic constraints
allows us to easily incorporate heuristic information from a variety
of sources, heuristics which can be used to guide the inference pro-
cess. This issue is relevant for inferring the specification on the re-
turned value of the createColItermethod. Each call to the next
method of the iterator requires a full aliasing permission, as indi-
cated by the specification in Figure 2. In the access permissions
methodology, this indicates an exclusive modifying permission that
can coexist with other read-only permissions. However, another
permission, unique, which indicates an absence of any other ref-
erences and is returned by the iterator method of the collec-
tion, is stronger than full, and can be used to satisfy the precon-
dition of the next method as well. The question becomes, should
the createColIter method be inferred to return a permission of
type full or unique, in the absence of any other constraints? ANEK
includes the heuristic that all method names beginning with “cre-
ate” return unique permissions with higher probability, since they
are, in practice, often wrappers for constructors. As returned per-
missions go, unique is the best choice whenever possible because
it gives the strongest guarantees to callers. This heuristic applies
to the createColIter method, and therefore is used to determine
that the return permission specification should be unique.

In addition to encoding heuristics and allowing the generation
of specifications in the face of conflicting constraints, probabilistic
constraints also enable ANEK to perform inference in a modular
fashion. One problem with many existing inference algorithms is
that they lack scalability, since the entire program must be analyzed
at once. ANEK, in contrast, is a modular algorithm that generates
method summaries in the form of probabilities representing likely
method specifications, which can then be refined as methods are
analyzed and reanalyzed in an iterative fashion. Since the analysis
is approximate, it suffices to run the inference algorithm for a
fixed number of iterations without reaching a fixpoint (as is usually

212

required by traditional iterative algorithms). Varying the number of
iterations allows for a trade-off between specification accuracy and
scalability.

ANEK infers specifications required by the PLURAL modular
static typestate checker [3, 5]; these are method pre and postcondi-
tions that describe both the abstract states parameters must inhabit
and aliasing permissions. The probabilistic constraints encode: (a)
logical rules which determine how permissions can be used, and
(b) heuristic rules which encode the most common or “best” spec-
ifications in various scenarios. These constraints form a model that
represents a probabilistic view of the space of all possible specifi-
cations. A solution to this model results in specifications that are
very likely. This paper makes the following contributions:

• We have developed a probabilistic specification inference algo-
rithm that combines logical rules (that encode program invari-
ants) with heuristic rules (that encode program intuitions) for
generating typestate specifications that in practice is fast and
generates good specifications.

• The algorithm generates probabilistic method summaries which
enable a modular analysis that can scale the inference to large
programs.

• We have evaluated ANEK on a number of small benchmark pro-
grams and one large open-source program containing 38,483
lines of code. The results for this large benchmark show that
ANEK can quickly infer specifications that are both accurate
and qualitatively similar to those written by hand, and at 5% of
the time taken to manually discover and hand-code the speci-
fication. As a consequence, these programs can be verified by
PLURAL automatically, with no user provided specifications.

This paper is organized as follows. Section 2 gives an overview
of the problem and also some background on the PLURAL system.
Section 3 defines the abstraction and constraint system in ANEK
together with the inference algorithms. Section 4 describes our em-
pirical evaluation of ANEK. And finally, Sections 5 and 6 describe
the related work and conclusion respectively.

2. Background and Goals
The purpose of ANEK is to infer typestate specifications, which
are then fed to PLURAL [3, 5], a static modular typestate checker
for Java programs. With PLURAL, programs can be checked for
correct protocol usage by examining one method at a time with-
out ever having to reconsider methods previously analyzed (in a
manner analogous to type-checking in most languages). In PLU-
RAL, reference types are supplemented with specifications that act
as type refinements. These refinements are flow-sensitive, so that
they can change at each step of the program as objects change state
(for example, as a file might change from open to closed). These
refinements are called access permissions. An access permission
includes information about the abstract state of an object and a suc-
cinct description of which operations any existing aliases to that
object are permitted to perform. The need for tracking the abstract
state of the reference is mostly straightforward. As a program ref-
erence transitions through the body of the method, PLURAL keeps
track of the abstract state of the object as methods are called and
as fields are read and assigned. When a method is called in the
method currently under analysis, PLURAL will check the abstract
states of each of the arguments and make sure they match the re-
quired states for each of the parameters to the method, as indicated
by the method’s specification.

But a modular checker also needs to know something about how
objects might be aliased if it is to perform a sound static analysis. In
the absence of any aliasing information, a sound modular checker
would be forced to conservatively assume that just about every

method call may modify the abstract states of all of the objects
in the static context through other program references. The aliasing
summary contained in each access permission informs the analysis
when it can be sure an object is not being modified through other
aliases, and when it must assume the object is. Because the aliasing
summaries are checked for consistency, the entire process is sound.

The aliasing summaries used by PLURAL are called permission
kinds, and there are five of them. Each permission kind associated
with a reference determines whether or not modification can be
performed through that reference, and whether or not other aliases,
if they exist, can read or modify. The five permission kinds are
summarized in Figure 4.

Other aliases
This Ref. N/A Can Read Can Write
Can Read Unique Immutable Pure
Can Write Unique Full Share

Figure 4. The five permission kinds.

At the point in code where an object is constructed, the new
reference is associated with a unique permission. From that point
forward, new aliases can be introduced through a process known as
splitting. For example, from a reference with unique permission, a
new modifying alias can be introduced by destroying the original
unique permission and creating two new share permissions, one for
the original reference and one for the new reference. Alternatively,
a single unique permission could be exchanged for one full per-
mission and multiple pure permissions. PLURAL makes sure that
these splits are done soundly, in a manner that respects the mean-
ing of each permission introduced. Additionally, permissions are
associated with fractional values which allow multiple weaker per-
missions to be combined into stronger ones in a process known as
merging. This feature comes from existing work on fractional per-
missions [7].

The most common way to use PLURAL is for framework and
library designers to annotate their APIs with access permission
specifications. API clients can run PLURAL on their code to ensure
that they are using the APIs correctly. If API objects are passed as
method parameters or stored as fields in a client’s program, then
she may need to add a specification to her own program in order to
inform the analysis what permissions are available.

Figure 2 shows a specification for the Iterator interface using
access permissions. The next method requires an exclusive modi-
fying permission (full) to the receiver which it returns to the caller.
Before the call, the receiver must be in the “HASNEXT” state. The
hasNext method, which does not need to modify the iterator ob-
ject, takes a pure permission, which it returns to the caller.

2.1 Goals for ANEK

While the PLURAL approach is quite powerful, it has one ma-
jor drawback; it requires programmers to write specifications at
method boundaries. This has the nice benefit of enabling modular
checking, but places an additional burden on the programmer who
merely wants to ensure correct protocol usage. Therefore, ANEK
has been designed to eliminate this burden by statically inferring
the access permission specifications.

We envision programmers using ANEK and PLURAL in the
following manner: First, developers of libraries and frameworks
would continue to provide PLURAL annotations along with their
APIs. This allows the most knowledgeable developers to build the
abstractions specific to their APIs, and formally define the ways in
which they must be used. Since an API is typically used by many
client programs, this effort is amortized over all the users of the
API. When a client wishes to use an API (annotated with specifica-

213

tions), however, they start by running the ANEK inference tool over
their code. ANEK will see which API methods are being used and
will infer appropriate PLURAL specifications in the client’s code.
With the new specifications, the programmer will then run PLU-
RAL. Since PLURAL is a sound checker, if PLURAL passes the re-
sulting program with the newly inferred annotations, it constitutes
a guarantee that the programmer is using the API correctly, with
little additional burden on the programmer’s part.

ANEK’s inference algorithm is probabilistic. In other words, it
solves a number of probabilistic constraints in order to determine
what specifications are likely to be used (rather than what specifi-
cations must be used). We have chosen to develop a probabilistic
inference, as opposed to a more traditional, logical inference, for
a number of reasons. Probabilistic constraints allow us to easily
include heuristics, encoding intuitions gleaned from several years
of experience writing such specifications. The specifications output
by ANEK are therefore idiomatic, and in some sense are the most
desirable specifications, rather than being just one of many satis-
fying specifications. But additionally, even the logical constraints,
which encode basic invariants of access permissions that should al-
ways hold true, are encoded probabilistically. This allows ANEK
to determine a solution even in the face of conflicting constraints,
such as when a bug exists in the program under inference. Because
PLURAL is a sound checker and will be run on the resulting speci-
fications, there is no danger due to the approximation.

On the performance side, there are very real benefits to using
an approximate approach. First, it can perform better than an exact
approach. But more interestingly, such an approach allows us to
infer specifications in a modular way. This is an important goal
for ANEK since it allows inference to scale to larger programs. In
the approach, probabilistic specification summaries describing the
current most likely specification are placed at method boundaries.
These summaries are refined and made more accurate over time,
while still presenting an interface against which method bodies
are locally inferred. The details of this algorithm are discussed in
Section 3.4.

3. The ANEK system
ANEK constructs a probabilistic constraint system that is based on
logical and heuristic rules from an abstraction of the program under
analysis. These constraints are solved in a modular fashion in order
to compute the desired specifications.

3.1 Permissions Flow Graph
The inference algorithm performs inference over an abstraction of
the program called the Permissions Flow Graph (PFG). A PFG is
a directed graph of the flow of permissions in each method of a
program. Permission flow itself is identical to a data flow except
for two differences. First, at method call sites and field assignments,
some amount of permission is retained in the calling or assigning
context. Second, permission can flow out of the arguments at a
method call site after the called method returns, representing the
manner in which permission is returned to a calling argument at a
call site. These are the only two differences.

A PFG Gm for a method m is constructed as follows: For each
method parameter, including the receiver for instance methods, two
nodes are created. One represents the permission required at the
precondition and the other represents the permission returned at the
postcondition. The flow of permission that originates at a parameter
precondition and is transformed as it passes through a method
body is represented using nodes and edges. A control flow graph
is constructed in order to determine the flow of the permission.
Additionally, a local must-alias analysis helps us track permission
(which fundamentally are related to objects) even if those objects
are reassigned to other local variables. If a variable is passed as

1 Row copy(Row original) {
2 Iterator <Integer> iter =
3 original.createColIter();
4 Row result = new Row();
5 while(iter.hasNext()) {
6 result.add(iter.next());
7 }
8 }

Figure 5. The copymethod from Figure 3 whose representation is
given in Figure 6

Figure 6. The PFG Gcopy generated for the method copy in Fig-
ure 5.

an argument to a method, then the graph will contain a directed
edge from the previous node in the graph to a node representing the
precondition of the corresponding method argument and call site.
The entire process is best explained with an example.

Consider the method copy shown in Figure 5. This method
gives rise to the PFG Gcopy shown in Figure 6. This figure ignores
portions of the graph related to the result variable for simplicity.
There are several interesting features worth pointing out.

First, note the path of the permission relating to the original
variable, which appears on the left-hand side of the figure. This
shows how methods calls are represented when there is no inter-
esting control flow. The node “PRE original” is generated, which
corresponds to the permission available to the original variable
at the precondition of the copymethod. This node is connected to a
split node which itself has two successor nodes. The first successor
is a node representing the precondition permission to the receiver
of the createColIter method. The second successor is a permis-
sion merge node. The first edge represents the permission that is
passed to the createColIter method, while the second edge rep-
resents the permission to the object that is retained by the copy
method for the duration of the call. If a permission split is going
to occur before the call, where a strong permission is converted to
multiple weaker permissions, such as the case when a unique per-
mission is available but only a full permission is needed for a call,
it will be manifest at this split node. Next, a node representing the
permission to the receiver node returned from the createColIter

214

method is generated. It is important to note that this node has noth-
ing to do with the return value of the createColIter method. It
merely represents permission to the receiver that is no longer used
by the method. The next node, the merge node, combines permis-
sion that was held at the call site with any permission returned by
the method. Finally, the node “POST original” represents the per-
mission available to the original object at the end of the method
body.

The right-hand side of Figure 6, which represents the permis-
sion returned to the return value of the createColIter method, is
quite similar. It contains two method calls whose structure is similar
to the call to the createColIter method. However, because this
method call occurs in a loop, there are additional edges to account
for the possible control flow paths. For example, an edge connect-
ing the receiver postcondition of the hasNext method and the end
of the method body exists, and represents the flow of permission to
the iterator when the hasNext method returns false.

1 Object accessFields(C o) {
2 o.f = new Object();
3 return o.f;
4 }

Figure 7. A permission graph containing field accesses and the
program from which it was generated. The dotted line represents
the reference a field access node maintains to its receiver.

For each field read and each field assignment in a program, a
corresponding node is generated in the permission flow graph. Field
read nodes will be connected via edges to the variables to which
they are assigned, and act as permission sources. Field assignments
act as permission sinks. They never contain outgoing edges, but
will have incoming edges leading from the nodes from which they
are assigned. All instance field read and assignment nodes will
separately keep track of the receiver node from which they were
accessed. In Figure 7, which illustrates a graph generated from field
accesses, the relationship with the receiver node is represented as a
dotted line.

3.2 Random variables and prior probabilities
Let Gm = (Vm, Em) be a PFG for a method m with node set
Vm and edge set Em. We associate each node n ∈ Vm with five
Bernoulli random variables Xn

unique, Xn
full, X

n
immutable, Xn

share

and Xn
pure, one for each permission kind. Each variable models

the probability that such a permission is available at the associated
node. The variables are distributed according to B(p), a Bernoulli
distribution with mean p. If, for instance, Xn

unique is distributed
according to B(0.1), this means that node n has permission unique
with probability 0.1.

Additionally, for each abstract state in the hierarchy of the type
with which the node is associated, we have a random variable
associated with that state. For instance, for a node associated with
a parameter i where the parameter is an iterator, that node would
have three random variables Xi

HASNEXT , X
i
END, X

i
ALIV E , one

for each of its abstract states.
Each random variable is given a prior distribution. This prior

distribution models our initial belief of how likely a given variable
is to be true. For most of the variables ANEK creates, we have no

information on their respective values (that is, true or false), since
we are trying to infer the specifications. For that reason, most vari-
ables are given a prior distribution equal to B(0.5) representing this
lack of information. However, if a specification already exists in the
source program, this strengthens our prior beliefs on how the vari-
ables are distributed. For example, consider the specification for the
receiver parameter shown in Figure 8. Based on this specification,

1 @Perm(requires="full(this) in HASNEXT",
2 ensures="full(this) in ALIVE")
3 T next() {...}

Figure 8. PLURAL specification for the receiver parameter.

ANEK will set the prior distributions for the variables associated
with the receiver pre and postcondition nodes. For the precondition
node, it will set the prior distributions for both the full permission
kind and the “HASNEXT” abstract state to the distribution B(0.9)
denoting the fact that both the full permission and “HASNEXT”
abstract state are high probability events. The remaining variables
will be given a low prior distribution of B(0.1). Therefore, the prior
distributions for each of the random variables associated with the
precondition node are as follows.

Random Variable Prior Distribution
Xunique B(0.1)
Xfull B(0.9)

Ximmutable B(0.1)
Xshare B(0.1)
Xpure B(0.1)

XHASNEXT B(0.9)
XEND B(0.1)
XALIV E B(0.1)

It is important to note that even though the specification is given,
we still say that the specification permission is only very likely
to be true (i.e., true with a probability of 0.9). This allows for
the possibility that the original specification was incorrect if the
evidence against it (as inferred from the analysis) is overwhelming.
Analogous to the nodes, each edge e ∈ Em in the PFG is also
associated with a similar set of random variables {Xe

k}, where k
is either a permission kind or an abstract state. This allows the
distribution of one node to influence the distributions of adjacent
nodes via the corresponding edge, as discussed in the next section.

3.3 The probabilistic constraint system
Setting the prior probabilities for the random variables in the PFG
models our initial beliefs based on known specifications. Subse-
quently, we add probabilistic constraints over these random vari-
ables that are based on the features of the program itself. These
constraints model dependencies that hold among the random vari-
ables. A solution to the constraints tells us for each node in PFG,
which permission kind and which abstract state are most likely to
be true.

We broadly classify all of the constraints that are added as be-
ing of one of two types, logical constraints or heuristic constraints.
Logical constraints encode basic permission rules which must al-
ways hold, such as those governing sound permission splitting [5].
Heuristic constraints, on the other hand, encode features that are
generally true of good PLURAL specifications. Importantly, even
though the logical rules must always be true in a program verified
by PLURAL, ANEK only dictates that they be true with some high
probability. It is precisely this feature which allows ANEK to infer
specifications even in the face of buggy programs. In the next two
sections, we will present each of the constraint generation rules in
turn. Each constraint generation rule is parametrized by some prob-
ability hn ∈ [0, 1] that represents high probability, and is given as

215

input to the algorithm. Parametrization of these high probabilities
allows us to tune the performance of inference.

3.3.1 Logical constraints
ANEK encodes the basic logic of access permissions through
a series of logical constraints. The logical constraints labeled
L1, . . . , L3 are described below.

L1: Outgoing Permissions At every node in the graph, the per-
mission at the node must be related somehow to the permissions on
its outgoing edges. If the node only has one outgoing edge, this is
pretty easy. The edge and the node must have the exact same per-
mission. So the following constraint is applied on the permission
and state random variables associated with that node (n) and edge
(e), with high probability:∧

k∈{unique,full,immutable,share,pure}∪states(n)

Xn
k = Xe

k |h1 (1)

However, if there are multiple outgoing edges, the story is a little
more complicated. Nodes can have multiple outgoing edges for one
of two reasons. In some cases, it is because the permission at the
node is being split into multiple permissions as new aliases are
introduced. In other cases, the multiple edges are due to control
flow branches in the original program. Since permission splits can
only occur before method calls and field reads, we can mark these
nodes as such, and apply different rules for splitting and control
flow branches. At branches, we apply constraint 1 for each outgoing
edge, mandating that the permission available at the node is equal
to the permission available at each outgoing edge. For permission
splits, however, the permission on the outgoing edges generally
cannot be identical.

There are certain ways in which an access permission can be
soundly split. For example, a unique permission can be split into
two share permissions, two immutable permissions or two pure
permissions. It cannot, however, be split into two full permissions
or two unique permissions, as those two newly created permissions
would violate the assumptions made by one another. Therefore,
at each node, constraints are placed on the corresponding random
variables that will enforce sound permission splitting. The (long)
series of constraints is as follows:

((Xn
unique ∧

∧
e∈outgoing(n)

∨
k∈{unique,full,imm,share,pure}X

e
k)∨

(Xn
full ∧

∧
e∈outgoing(n)

∨
k∈{full,imm,share,pure}X

e
k)∨

(Xn
imm ∧

∧
e∈outgoing(n)

∨
k∈{imm,share,pure}X

e
k)∨

(Xn
share ∧

∧
e∈outgoing(n)

∨
k∈{share,pure}X

e
k)∨

(Xn
pure ∧

∧
e∈outgoing(n)X

e
pure))∧∧

e∈outgoing(n)X
e
unique ⇒

∧
e2∈outgoing(n)−e ¬(Xe2

unique ∨X
e2
full)∧

e∈outgoing(n)

∧
s∈states(n)X

e
s = Xn

s |h2

(2)

L2: Incoming Permissions When a node has incoming edges,
ANEK also adds constraints on the relationship between the incom-
ing edge permissions and the node permission. Specifically, ANEK
says that the permission associated with a node is equal to one of
the permissions on the incoming edges with high probability. The
following constraints are generated for a node n with incoming
edges:

∨
e∈incoming(n)

∧
k∈{unique,share,imm,share,pure}∪states(n)X

n
k = Xe

k |h3

(3)

L3: Field Write For any field store node (i.e., field assignment),
the associated receiver node cannot be associated with one of the
read-only permissions, immutable or pure. This constraint then

sets the receiver to be immutable or pure with a very low prob-
ability. A field cannot be modified without writing permission to its
receiver, so whenever we see a field store we know that we have
writing permission to the receiver object.

3.3.2 Heuristic Constraints
For the random variables generated from a PFG, a series of addi-
tional “heuristic” constraints are also added. These constraints cor-
respond to our intuitions about what makes a good PLURAL speci-
fication.

H1: Constructors Constructors generally return unique permis-
sion, so for the specification for the object created by a constructor,
we say that the variable Xunique is likely to be true with elevated
probability. This is merely a heuristic since constructors do not have
to return unique permission. Aliases can be introduced and stored
in various data structures before the constructor returns.

H2: Pre and Post For a given parameter of a method, the per-
mission kind, but not the state, of the pre and postcondition nodes
are the same with high probability. This is again a heuristic as it
is possible for methods to retain an input permission and return a
different permission.

H3: Factory Methods Methods whose names begin with the
word “create” usually return a unique permission, much like a con-
structor. These methods in practice are often static factory methods.
Therefore, in our analysis, the return variable from such methods,
Xunique, is true with elevated probability.

H4: Setter Methods Methods whose names begin with the word
“set” generally require a writing permission (i.e., unique, full or
share) to their receiver, since they are often used to write to re-
ceiver fields. Therefore, when encountering such a method in the
PFG, the variables Ximmutable and Xpure for the receiver pre and
postcondition are constrained to be true with low probability.

H5: Thread-Shared Targets of synchronized blocks are of full,
share or pure permission with high probability. This heuristic is
based on ideas developed in the concurrent version of the PLURAL
analysis [3]. The permissions full, share and pure are the three
permission kinds that may indicate possible thread-shared objects.

3.4 Probabilistic model and inference
In the previous section, we described how logical constraints L1,
L2, L3 and heuristic constraints H1, H2, H3, H4, H5 can be de-
rived from a PFG representation. We will now show how these con-
straints can be looked upon as a probabilistic model, in particular,
a joint probability distribution describing the whole space of spec-
ifications.

Let X1, . . . , Xn be n Bernoulli random variables where for
each 1 ≤ i ≤ n, Xi takes values from the domain {0, 1}. Let
p(X1, . . . , Xn) be a joint probability distribution function over
these variables. Associated with p(X1, . . . , XN) are n marginal
functions pi(Xi), 1 ≤ i ≤ n defined as:

pi(Xi) =∑
X1∈{0,1}

· · ·
∑

Xi−1∈{0,1}

∑
Xi+1∈{0,1}

· · ·
∑

Xn∈{0,1}

p(X1, . . . , Xn)

(4)
where the sum is over all variables except Xi. Intuitively, the
marginal function pi(Xi = a) corresponds to the probability of the
variable Xi taking the value a ∈ {0, 1}. Since there are an expo-
nential number of terms in the above equation, a naı̈ve algorithm for
computing pi(Xi) is not tractable. Suppose that p(X1, . . . , Xn)
can be written as a product of functions, where each function has

216

some subset of {X1, . . . , Xn} as its arguments, that is:

p(X1, . . . , Xn) =
∏
j∈J

fj(Zj) (5)

where J is a discrete index set,Zj ⊆ {X1, . . . , Xn} and fj(Zj) is
a function having the elements ofZj as arguments, with the interval
(0, 1] as its range, and the product is the usual pointwise product of
functions. Given this factorization, there are a number of machine
learning techniques that efficiently estimate the marginal functions
by exploiting the fact that every factor is a function of small number
of variables [14].

In our setting, each of the functions fj(Zj) in Equation 5 is a
probabilistic constraint that describes either a logical constraint or
a heuristic constraint as defined in Section 3.3. For instance, con-
sider the conjunct Xn

share = Xe
share |h1 in Equation 1 (logical

constraint L1). This can be encoded as a probabilistic constraint as
follows.

f(Xn
share, X

e
share) ={

h1 if (Xn
share = Xe

share)
1− h1 otherwise (6)

The pointwise product of such probabilistic constraints represents
the probability space over specifications. The specifications are
computed by sampling the marginal functions (defined by Equa-
tion 4) for the joint probability distribution. The problem of infer-
ring specifications can be formally defined as follows:

Definition 1. Let P be a program defined by a set of methods M ,
and let Πm be the probabilistic model for a methodm ∈M defined
as follows.

Πm = Γm ·

 ∏
c∈CALLSITES(m)

PARAMARG(c)

where Γm denotes the pointwise product of the logical and heuris-
tic constraints associated with method m, and PARAMARG(c) de-
fines a set of equality constraints that bind the method m’s param-
eters to their respective arguments at a call site c. The probabilistic
model ΠP for the program P is the product of the probabilistic
models for all its methods and defined as.

ΠP =
∏

m∈M

Πm

Then, we are interested in computing marginal functions for the
probabilistic model ΠP .

It is important to note that the specifications for the program can
be easily derived from the marginal functions of ΠP via sampling.
These marginal functions can be computed by using an off-the-
shelf machine learning algorithm. However, a serious drawback of
such an approach is that it would not be modular, thus severely
limiting scalability.

We propose an inference procedure ANEK-INFER that is a mod-
ular analysis (shown in Figure 9). The set of all methods M in the
program under analysis is the input to this procedure. Xm is the set
of all random variables for a method m as defined in Section 3.2.
We denote the PFG for method m by Gm. The probabilistic con-
straints system Γm is as defined in Definition 1.

In line 1, a worklist W of probabilistic models is initialized to
the empty list. Next, in lines 2–6, for every method m:

(a) The random variables in Xm are initialized (described in Sec-
tion 3.2).

(b) A probabilistic constraint system Γm is created by the proce-
dure Model(Gm).

procedure ANEK-INFER

input:
M : Set of all methods in the program

vars:
Xm: Set of all random variables for method m
Gm: PFG for method m
Γm: Probabilistic constraints for method m
W : Worklist of probabilistic models
πm: Probabilistic summary for method m
σm: A deterministic summary for method m

output:
σ: Specification that maps every method to its deterministic
summary

1: W := ∅
2: for each m ∈M do
3: INIT(Xm)
4: Γm := MODEL(Gm)
5: W := W ∪ {Γm}
6: end for
7: count := 0
8: while count ≤MaxIters do
9: count := count+ 1

10: Γm := CHOOSE(W)
11: W := W \ {Γm}
12: for each c ∈ CALLSITES(m) do
13: APPLYSUMMARY(Γm, πc))
14: end for
15: X old

m := Xm

16: Xm := SOLVE(Γm)
17: if Xm 6= X old

m then
18: UPDATESUMMARY(πm, Xm)
19: W := W ∪ {Γm}
20: end if
21: end while
22: for each m ∈M do
23: for each X ∈ πm do
24: if p(X = true) > t then
25: σm(X) := true
26: end if
27: end for
28: σ(m) := σm

29: end for
30: return σ

Figure 9. The annotation inference algorithm ANEK-INFER.

(c) The worklist W is initialized to a list of probabilistic models
for methods.

ANEK-INFER is an iterative algorithm (lines 8–21). In lines 10
and 11, a model Γm for method m is picked from the worklist
W by the choice function CHOOSE(W) and removed from W .
In lines 12–14, for every call site corresponding to a method c, a
probabilistic summary πc for that method is applied to the model
Γm (where method m calls method c). A probabilistic summary
πc for method c is the set of all random variables associated with
the precondition and postcondition nodes in its PFGGc. Due to the
initialization in line 3, all probabilistic summaries for methods are
also appropriately initialized. A probabilistic summary maintains
the current values of the random variables corresponding to the
precondition and postcondition nodes for a method. The procedure
Solve called in line 16 takes Γm as input and computes approximate

217

Eclipse

JDT

P
lu

ra
l

Ec
lip

se
 A

p
p

lie
r

Ec
lip

se
 E

xt
ra

ct
o

r

Java Components .NET ComponentsXML

Graph Loader

Det. Constraint
Generator

Prob. Constraint
Generator

Infer.NET

Graph Generator

A

B

Off-the-Shelf
Component

Anek
Component

File

Data flow

Figure 10. The architecture diagram for ANEK.

marginal functions3 for the variables Xm. We use an off-the-shelf
machine learning algorithm to efficiently implement Solve. If the
distributions associated with the random variables in Xm have
changed, then the summary πm for method m is updated via the
procedure UPDATESUMMARY (line 18) and the model Γm is added
to the worklist W (line 19). It is important to note that summaries
are computed by analyzing each method once at a time and it
is via these summaries that analysis information is disseminated
across methods. This makes the ANEK-INFER algorithm a modular
analysis.

The loop (8–21) is runMaxIters number of times (as opposed
to computing a fixpoint) which is another source of approxima-
tion. Lines 22–27 compute the specification from the probabilis-
tic summaries for each procedure. If for each random variable X
in the probabilistic summary πm for a method m, the probability
p(X = true) is greater than a user-defined threshold t ∈ [0.5, 1),
then the deterministic value of that variable is set to true and this
information is stored in a map σm. This deterministic summary σ
for all methods forms the specification that is returned by ANEK-
INFER. It is interesting to note that the result computed by ANEK-
INFER(M) at a fixpoint (corresponding to an exact computation) is
identical to the result computed by SOLVE(ΠP).

4. Evaluation
In this section, we describe our implementation and report the
empirical results of running the combination of ANEK and PLURAL
on a number of Java benchmark programs. All experiments were
performed on a system with a 3.19 GHz Intel Pentium 4 processor
and 2 GB RAM running Microsoft Windows XP.

4.1 The ANEK Implementation
The architecture of ANEK is shown in Figure 10. Each component
of ANEK is organized into a pipeline. The first component, the
Eclipse Extractor, is a plugin to the Eclipse Java Development
Tools (JDT), the Java IDE in Eclipse. Its job is to visit the Java AST
generated by JDT for the program under inference and generate
the abstract representation. This representation is stored to disk
in an intermediate, XML-based format. This component is also
responsible for the user interface, the menus and action items in

3 Since we are only interested in estimating the likely values of the random
variables and not their exact distributions, computing approximate marginal
functions suffices for our purpose.

Eclipse that allow users of PLURAL to run inference without ever
leaving their IDE.

Once ANEK has generated an XML representation of the pro-
gram, this representation is handed off to an F# program4. It be-
gins by generating a number of constraints based on the shape of
the program (Deterministic Constraint Generator). These are the
constraints described in Section 3.3. However, at this phase each of
the constraints is deterministic; there are no probabilities involved.

It is in the next component, the Probabilistic Constraint Gen-
erator, that the deterministic constraints are transformed into prob-
abilistic ones and the ANEK-INFER algorithm is invoked. ANEK-
INFER is implemented using INFER.NET [16], a library that ex-
poses a number of abstractions, in the form of types and methods,
which allow networks of probabilistic variables and constraints to
be assembled and solved. If the most likely permission kind and
abstract state, as determined by ANEK-INFER, is greater than some
threshold value, then a generated graph representation will contain
this newly inferred specification.

Finally, in the last component, the newly generated representa-
tion is applied to the original Java program inside another Eclipse
plugin called the Eclipse Applier. This program walks through the
AST of the original Java program and applies the new specification.

4.2 Experiments
In order to evaluate the utility of ANEK, we performed a number of
small experiments and one main experiment. The goal was to see
if ANEK would infer annotations that were correct and would not
lead to a large number of false warnings when running the PLURAL
tool.

First, we developed a number of test benchmarks. Each of these
benchmarks consisted of one or more classes, with one or more
methods, some of which were annotated by us before running the
ANEK tool. Each experiment was designed to test some particular
ANEK constraint or feature. During the experiments we would run
ANEK on the test suite, and ensure that correct annotations were in-
ferred, and that after inference PLURAL would report no warnings.
At issue is the evolution of ANEK in response to newly perceived
problems. One of the great benefits of ANEK’s architecture is that
it is so easy to evolve it by adding new constraints. Over the course
of its implementation we added new constraints or modified exist-
ing constraints numerous times. However, we wanted to ensure that
the new constraints, which may fix one particular problem, did not
come at the expense of any previously-correct behavior. Therefore,
our small experiment suite formed a regression suite of sorts and
also as a training set to fine-tune the parameters of the inference
engine.

Our primary experiment, though, was to use ANEK to infer
annotations for the PMD static analysis framework (Table 1). In this
experiment, the Java Iterator API was annotated and then ANEK
was used to infer annotations within the PMD application, which
makes extensive use of the API.

PMD
Lines of Source: 38,483
Number of Classes: 463
Number of Methods: 3,120
Calls to Iterator.next(): 170

Table 1. Simple statistics for the PMD application.

Specifically, PMD was used as the client-side case study in
Kevin Bierhoff’s doctoral thesis [4]. In his experiment, Bierhoff
took an annotated Iterator API, ran PLURAL on PMD, and added

4 http://research.microsoft.com/fsharp/fsharp.aspx

218

appropriate annotations by hand to the program until there were
as few remaining warnings as possible. Our goal was essentially
to replicate this experiment by using ANEK instead of doing any
specification by hand.

Method Annotations Warnings Time Taken
Original 0 45 0
Bierhoff 26 3 75min [4]
Anek 31 4 3min 47sec
Anek Logical N/A N/A DNF

Table 2. The results of running ANEK on PMD.

Table 1 contains a number of basic statistics for the PMD ap-
plication. Of particular note is the number of calls to the method,
java.util.Iterator.next. This is important because the next
method is the most important for verification purposes. It is the
only method on the Iterator interface that requires the iterator
instance to be in a particular state when called.

Table 2 shows the results of our experiments. We ran several
experiments and recorded three statistics for each one. The first
configuration is Original, where we ran PLURAL on PMD with no
annotations at all, in its original form. The point of this experiment
is just to show that some annotations must be inferred in the ap-
plication in order to verify correct use of the Iterator API. To that
end, PLURAL reported 45 warnings when run on the unannotated
program. The next configuration, Bierhoff, is PMD as annotated by
Bierhoff for his thesis work. Manual annotation took 75 minutes as
reported in [4]. PLURAL reported three warnings, all of which were
false positives. In these three cases, the next is called on an iterator
without first calling the hasNext method to establish dynamically
that the iterator has subsequent elements. In all three cases, other
program invariants not expressed in PLURAL guarantee that the call
to next will not fail at run-time because the underlying collection
is known to be non-empty. In fact, these cases were quite similar to,
and the insipration for the testParseCSV method from Figure 3.

The next experiment uses ANEK to infer annotations on PMD.
The Anek configuration is the standard configuration. When run-
ning PLURAL on PMD with the annotations inferred by ANEK, four
warnings are generated, and the inference process takes 3 minutes
and 47 seconds. Of the four warnings, three are exactly the same
warnings issued by PLURAL as in the Bierhoff configuration. The
fourth warning, which is also a false-positive, can be attributed to a
lack of branch-sensitivity. While the PLURAL static analysis takes
the result of conditional expressions into account, ANEK currently
does not, and therefore cannot infer the correct specification for a
method that is only called in true branches of a conditional. As
is evident from the experiments, ANEK performs as well as with
hand-coded annotations, and at approximately 5% of the elapsed
time and with no human involvement.

Finally, in addition to comparing ANEK to manual annotation,
we wanted to compare it to a more traditional specification infer-
ence approach, specifically, approaches that are built on top of log-
ical constraint solvers. While such an inference tool currently does
not exist for PLURAL, two experiments were performed in an at-
tempt to understand how such tools might perform.

First, we modified ANEK to add an additional Logical mode.
In this configuration only logical constraints are considered and
solved deterministically, while all heuristic constraints are turned
off. In this experiment, Anek Logical was run on PMD in an
attempt to infer specifications. When this was done, the inference
procedure ran out of memory before a fixed point was reached, and
therefore no results could be presented.

Our second attempt to compare ANEK to a traditional infer-
ence algorithm relies on PLURAL’s own local permission inference.

Inference Tool Time Taken Warnings
ANEK 22 sec 0

Plural Local Inference 181 sec 0

Table 3. The results of running ANEK on a test program to com-
pare performance again Plural’s local inference

While PLURAL requires annotations on method boundaries it uses
a local permission inference so that programmers do not have to
write annotations on local variables. This analysis is responsible
for determining which fractions of permissions are consumed and
returned by different parts of a method body, for finding a satisfying
assignment for all of the various permission constraints imposed by
all of the called methods and returned permissions. The underlying
algorithm relies upon Gaussian Elimination to find satisfying frac-
tional permission assignments [4, ch. 5]. The overall approach is
comparable to other similar fractional inference algorithms [19].
In order to use PLURAL’s local inference as a point of comparison,
we took a small test program crafted for this experiment which con-
tained numerous short methods and ran ANEK on it to infer method
specifications. Then, in a second run, we inlined each method so
that the resulting program consists of one single large method and
ran PLURAL on this program. Both inference tools end up doing
the same work, since by solving permission constraints for the en-
tire large method body, PLURAL is essentially inferring which per-
missions must be available at the same points as ANEK. Table 3
shows the results for this experiment. The program under inference
is small (400 lines) but contains numerous control flow branches.
ANEK performed well, doing the same inference task in roughly
one ninth of the time.

4.3 Discussion
In this section, we will discuss the results of our experiment and
their ramifications. Overall, we were quite pleased with the results
of the experiment. In approximately 5% of the time it took to an-
notate the program by hand, ANEK was able to infer specifications
that were almost as good, and with no human involvement. Specif-
ically, the specifications inferred by ANEK lead to four warnings
when the PLURAL tool was subsequently run on the result, versus
three warnings from hand-written specifications. This difference of
one warning is entirely due to ANEK’s lack of path-sensitivity in
its inference scheme, a feature PLURAL itself supports. Precision-
wise, ANEK does a very good job with the annotations it infers.
Moreover, when compared with other PLURAL case studies where
annotations were applied manually [6], the PMD case study went
very quickly. Often it takes several hours to manually annotate a
code base, so we expect to see even bigger time savings on future
experiments.

While our experiments comparing ANEK to logical inference
tools were somewhat rough, they suggest that ANEK can outper-
form traditional-style inference tools. We largely attribute this to
the use of approximation algorithms for probabilistic constraint
solving.

We also claimed that our approach is a good idea because proba-
bilistic permissions enable reasoning in the face of conflicting con-
straints. This feature was needed for our PMD experiment because
of the three locations in which the next method was called with-
out a proceeding call to hasNext. Just as in the example presented
in the introduction, the conflicting constraints introduced by such
calls were tolerated, and satisfactory specifications were still in-
ferred rather than ANEK giving up. Given that the remaining 167
calls to the next()method were correctly verified by PLURAL, the
resulting specifications are still quite useful to programmers.

219

Description Count
Same 14
ANEK Added Helpful Spec. 6
ANEK Added Constraining Spec. 1
ANEK Removed Spec. 3
ANEK Changed Spec., More Restrictive 6
ANEK Changed Spec., Wrong 3

Table 4. Comparison of by-hand annotations with Anek

The quality of the specifications inferred by ANEK is generally
good. Table 4 summarizes the annotations inferred. Specifically,
these numbers are for the specifications inferred by ANEK with re-
spect to the hand-specified version (Bierhoff). 14 of the specifica-
tions were exactly the same. ANEK inferred 6 specifications that
were correct, potentially useful in future versions of the application
and imposed no additional proof burden. In one case ANEK added
a specification that was not necessary and may, in the future, cause
additional proof burdens. In 3 cases, ANEK did not infer a specifi-
cation that was present in the hand-specified version. All three of
these were related to dynamic state test methods, which ANEK cur-
rently does not attempt to infer. The removed specifications were
immaterial because at all use sites, a super-type specification took
precedence. In 6 places, ANEK changed an existing specification to
make it more restrictive, which, while not causing any additional
errors now, may lead to additional proof burdens in future versions
of the application. Finally, 3 specifications were wrong outright.
One of these incorrect specifications led to the additional warning.
The other two did not affect verification at all.

One nice benefit of creating an analysis based on probabilistic
constraints is the ease of design. It turned out to be quite easy to
add new constraints. As we went through our design iterations, we
started with a basic suite of probabilistic constraints that we thought
would yield good results. However, on some of our small bench-
marks, we found that for one reason or another these constraints
were not quite yielding the expected results. Fortunately, it is quite
easy to add new constraints. So, as we realized that one constraint
was overly specific, or that another, say, did not work in all situa-
tions, it was trivial to add a new constraint so that the results would
be more to our liking.

5. Related work
Our work is related to MERLIN [15], a tool based on probabilistic
analysis for inferring security annotations useful for detecting in-
formation flow vulnerabilities. In general, the specifications ANEK
infers are much more detailed and intricate behavioral properties
than those inferred by MERLIN. Furthermore, ANEK introduces
a general framework that is based on the philosophy of combin-
ing logical rules with heuristic rules. As such, ANEK must know
much more about the details of each function’s behavior. In con-
trast, MERLIN’s annotation inference is based on how functions
are used in the implementation and does not rely on the function’s
actual behavior. Moreover, the inference in MERLIN is not modu-
lar and this limits its scalability. Additionally, with ANEK, we have
the nice feature that after specifications are inferred, a sound static
analysis can be run, verifying the results of the inference and acting
as a safety net. For MERLIN, such a tool was unavailable.

Kremenek et al. [13] propose a technique for inferring owner-
ship annotations that is also based on a probabilistic analysis. Like
MERLIN, this analysis also infers less expressive specification and
is not modular.

Dietl [9] developed a global analysis for inferring Universe
Type annotations using a SAT solver. Besides the fact that we are

inferring typestate annotations, the primary difference between this
work and ours is that it requires satisfiability. If a program has bugs
and therefore has no valid ownership type, the inference will fail
with unsatisfiable constraints. On the other hand, ANEK will always
produce the best possible specification.

Terauchi [19] proposed a global analysis for inferring fractional
permissions in order to verify a lack of race conditions. While the
methodology itself solves a problem that might be useful in our
work, their underlying methodology is much different, since they
do not use probabilistic constraints. Presumably such an analysis
would have to give up when confronted with false positives of the
sort we encountered in our case study.

Houdini [10] is an annotation inference engine for the ESC/Java
tool [12]. It first heuristically generates a number of candidate
annotations or invariants and subsequently, incorrect annotations
are pruned away by invoking ESC/Java. This is similar to the
manner in which the specifications inferred by ANEK are checked
by PLURAL in order to ensure soundness of verification.

An important line of work has addressed the related but dif-
ferent problem of protocol inference. Such approaches have used
static [1, 17, 20] and dynamic [21, 22] analysis to determine which
classes in a program place restrictions on the ordering of their
method calls, and attempt to infer a specification for their correct
usage. The dynamic approaches generally use statistical methods
to determine which sequences of method calls represent protocols,
and which are merely due to coincidence. While the problem of in-
ferring protocols is different from the problem of inferring aliasing
annotations, these approaches clearly complement our own, and in
the future we plan to investigate their combination.

6. Conclusion
In this paper we presented ANEK, a probabilistic specification
inference tool that can be used to infer access permissions for use in
modular typestate checking. ANEK is novel in that it is modular and
is built using probabilistic constraints. These constraints allow us
as developers to easily encode into the analysis our understanding
of what makes a good specification. Probabilistic constraints also
make ANEK robust to bugs in the program under inference and
enable a modular analysis. In order to evaluate our approach, we
used ANEK to infer specifications for PMD, mimicking a case
study that was performed by Bierhoff [4] by hand as part of his
Ph.D. thesis. The results were good – in fact, the specifications
inferred by ANEK were nearly as good as those written by hand and
were obtained in approximately 5% of the time it took to manually
discover them.

Acknowledgments
We thank G. Ramalingam for suggesting the idea of classify-
ing ANEK’s constraints as logical and heuristic constraints. We
also thank Jonathan Aldrich, Akash Lal and Sriram Rajamani for
their invaluable comments. Thanks are also due to John Winn
for help with using the INFER.NET API. The first author was
supported by several grants including DARPA grant #HR0011-
0710019, NSF grant CCF-0811592, R&D Project Aeminium
CMU-PT/SE/0038/2008 in the CMUPortugal program, Army Re-
search Office grant #DAAD19-02-1-0389 entitled “Perpetually
Available and Secure Information Systems,” the Department of
Defense, the Software Industry Center at CMU and its sponsors,
especially the Alfred P. Sloan Foundation and a National Science
Foundation Graduate Research Fellowship (DGE-0234630).

220

References
[1] R. Alur, P. Černý, P. Madhusudan, and W. Nam. Synthesis of interface

specifications for java classes. In POPL ’05: Principles of Program-
ming Languages, pages 98–109, 2005.

[2] M. Barnett and K. R. M. Leino. Weakest-precondition of unstructured
programs. In PASTE ’05: Program Analysis For Software Tools and
Engineering, pages 82–87, 2005.

[3] N. E. Beckman, K. Bierhoff, and J. Aldrich. Verifying correct usage
of atomic blocks and typestate. In OOPSLA ’08: Object Oriented
Programming Systems, Languages, and Applications, pages 227–244,
2007.

[4] K. Bierhoff. API Protocol Compliance in Object-Oriented Software.
PhD thesis, Carnegie Mellon University, April 2009.

[5] K. Bierhoff and J. Aldrich. Modular typestate checking of aliased
objects. In OOPSLA ’07: Object Oriented Programming Systems,
Languages and Applications, pages 301–320, 2007.

[6] K. Bierhoff, N. E. Beckman, and J. Aldrich. Practical API protocol
checking with access permissions. In ECOOP ’09: European Confer-
ence on Object-Oriented Programming, pages 195–219, July 2009.

[7] J. Boyland. Checking interference with fractional permissions. In SAS
’03: Static Analysis Symposium, pages 55–72. Springer, 2003.

[8] J. Condit, B. Hackett, S. K. Lahiri, and S. Qadeer. Unifying type
checking and property checking for low-level code. In POPL ’09:
Principles of Programming Languages, pages 302–314, 2009.

[9] W. Dietl. Universe Types: Topology, Encapsulation, Genericity, and
Tools. PhD thesis, ETH Zurich, December 2009.

[10] C. Flanagan and K. R. M. Leino. Houdini, an annotation assistant for
ESC/Java. In FME ’01: International Symposium of Formal Methods
Europe, pages 500–517, 2001.

[11] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe,
and R. Stata. Extended static checking for java. In PLDI ’02:
Programming Language Design and Implementation, pages 234–245,
2002.

[12] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe,
and R. Stata. Extended static checking for Java. In PLDI ’02:
Programming Language Design and Implementation, pages 234–245,
2002.

[13] T. Kremenek, P. Twohey, G. Back, A. Ng, and D. Engler. From
uncertainty to belief: Inferring the specification within. In OSDI ’06:
Operating Systems Design and Implementation, pages 161–176, 2006.

[14] F. R. Kschischang, B. J. Frey, and H. A. Loeliger. Factor graphs
and the sum-product algorithm. IEEE Transactions on Information
Theory, 2(47):498–519, 2001.

[15] B. Livshits, A. V. Nori, S. K. Rajamani, and A. Banerjee. Merlin:
specification inference for explicit information flow problems. In
PLDI ’09: Programming Language Design and Implementation, pages
75–86, 2009.

[16] T. Minka, J. Winn, J. Guiver, and D. Knowles. In-
fer.NET 2.4, 2010. Microsoft Research Cambridge.
http://research.microsoft.com/infernet.

[17] M. K. Ramanathan, A. Grama, and S. Jagannathan. Static specifica-
tion inference using predicate mining. In PLDI ’07: Programming
Language Design and Implementation, pages 123–134, 2007.

[18] R. E. Strom and S. Yemini. Typestate: A programming language
concept for enhancing software reliability. IEEE Trans. Softw. Eng.,
12(1):157–171, 1986.

[19] T. Terauchi. Checking race freedom via linear programming. In PLDI
’08: Programming Language Design and Implementation, pages 1–
10, 2008.

[20] J. Whaley, , M. C. Martin, , and M. S. Lam. Automatic extraction
of object-oriented component interfaces. In ISSTA ’02: International
Symposium on Software Testing and Analysis, pages 218–228, 2002.

[21] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das. Perracotta:
Mining temporal API rules from imperfect traces. In ICSE ’06:
International Conference on Software engineering, pages 282–291,
2006.

[22] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei. MAPO: Mining
and recommending API usage patterns. In ECOOP ’09: European
Conference on Object-Oriented Programming, pages 318–343, 2009.

221

