
An Empirical Study of Object Protocols in the

Wild

Nels E. Beckman, Duri Kim, and Jonathan Aldrich

Carnegie Mellon University, Pittsburgh, USA
{nbeckman,aldrich}@cs.cmu.edu, duri.kim@alumni.cmu.edu

Abstract. An active area of research in computer science is the preven-
tion of violations of object protocols, i.e., restrictions on temporal order-
ings of method calls on an object. However, little is understood about
object protocols in practice. This paper describes an empirical study
of object protocols in some popular open-source Java programs. In our
study, we have attempted to determine how often object protocols are
defined, and how often they are used, while also developing a taxonomy
of similar protocols. In the open-source projects in our study, comprising
almost two million lines of code, approximately 7.2% of all types defined
protocols, while 13% of classes were clients of types defining protocols.
(For comparison, 2.5% of the types in the Java library define type pa-
rameters using Java Generics.) This suggests that protocol checking tools
are widely applicable.

1 Introduction

Object protocols are rules dictating the ordering of method calls on objects of a
particular class. We say that a type defines an object protocol if its concrete state
can be abstracted into a finite number of abstract states of which clients must be
aware in order to use that type correctly, and among which object instances will
dynamically transition (a definition we will expand in Section 2.1). The classic
example of an object protocol, often cited in research literature, is that of a file
class. Instances of this file class can only have their read methods called while
the file is open. Once the file is closed with the closemethod, subsequent calls to
the read method will result in run-time exceptions or undefined behavior. Most
popular languages do not give object protocols first-class status, and therefore
cannot ensure their correct use statically.

Static and dynamic checking of object protocols is an extremely active area of
research in the software engineering and programming languages communities.
There have been protocol checkers based on software model checking [3, 12].
There have been type systems and flow analyses for checking object protocols [23,
8, 19, 6]. (Type-based checkers are so common that these properties are often
referred to as “typestate” properties.) There have been checkers that focus on the
narrower problem of object initialization [10, 22], and checkers that focus on the
wider issues of framework conformance [16, 11]. There have even been dynamic
checkers [14, 5], and checkers that focus on concurrent applications [4, 17].

2

While many of these approaches are quite powerful and their designs elegant,
we argue that very little is known about how protocols are used in practice.
Do they occur often or are they rarely defined? Are they used by many other
classes? Are the protocols themselves simple, or complex? These are the kinds
of questions we have attempted to answer with this study.

In this paper, we present an empirical study on object protocols in open
source Java software. We took several popular open-source projects and the
Java standard library, ran a suite of automated analyses that attempted to find
evidence of object protocols, and manually investigated the results.

This work contains several contributions. As part of our investigation, we
discovered that object protocol definition is relatively common (in about 7%
of all types) and protocol use even more so (by about 13% of all classes). We
discovered seven behavioral categories of object protocols that account for 98%
of all the protocols we discovered. Compared to existing protocol studies which
looked at large volumes of code [26, 27, 2], ours is the first to attempt to examine
characterstics of the protocols themselves, for example frequency of definition
and categories of protocols.

The paper proceeds in the following manner: Section 2 discusses the design
of our experiment. This includes important definitions, description of our auto-
mated analyses, the data that we gathered and the motivation underlying our
approach. Section 2.4 describes the threats to the validity of our experiment.
Section 3 presents the data that we gathered during our study, and Section 4
discusses that data and its implications for other researchers.

2 Methodology

Our study proceeded in the following manner: We created a static analysis to
detect patterns in source code that we believe are indicative of object protocols.
Then, we ran the static analysis on popular open-source Java projects and the
Java standard library. Next, we manually investigated the reports issued by the
static analysis, marking each as evidence for a protocol or not. During this pro-
cess, data about the location, classes involved, their super-types, and more was
gathered. We also created categories of similar protocols based on our observa-
tions. Finally, we used the information about which types define protocols in
order to run another automated analysis which gathered information about the
usage of those protocols. An earlier version of this study was conceived by one
author, Duri Kim, and presented in her masters thesis [18].

The first part of this section will discuss our definitions, namely, what are
object protocols? Next we walk the reader through the experimental process,
including a description of our analyses and the data we gathered. Finally, we
describe the Java programs we analyzed and threats to the validity of our study.

2.1 Definitions and Scope

One of the trickiest parts of discussing object protocols is agreeing on exactly
what is meant by the term. While many sanctioned interactions between dif-

3

ferent pieces of code could be described generically using the term protocol, we
choose to focus on a definition that is based around abstract state machines. The
definition of object protocol stated here sets the scope for our entire experiment.
It is the idea on which our analyses and terms like “false negative” will be based.

Definition A type defines an object protocol if the concrete state of objects
of that type can be abstracted into a finite number of abstract states of which
clients must be aware in order to use that type correctly, and among which object
instances will dynamically transition.

This definition contains several key ideas.

client The states of the protocol must be observable and relevant to clients.

abstract and finite The states must be abstractions of any internal represen-
tation, and there must be a finite number.

runtime transitions Methods calls on an object instance after construction
will cause it to transition between abstract states.

correct use Failure of clients to obey a protocol can result in run-time excep-
tions or undefined behavior.

Classic examples of protocols fall under this definition. For example, an in-
stance of the java.io.FileReader class can be interpreted as having two ab-
stract states, Open and Closed. Clients must be aware of which state a given
instance of the file is in otherwise they might incorrectly call a method such
as read, which requires the file to be open, when the file is actually closed.
java.util.Iterator fits our definition as well. Even though it is an interface
and does not have its own concrete state, clients must be aware that the next
method can only be called when a call to hasNext would return true.

Our definition includes initialization protocols; objects that must have certain
methods called after construction to put them into a valid, initialized state.
While these protocols may in fact be quite simple, they fit our definition, and
are an important piece of the contract of many types.

We additionally include a degenerate form of protocol known as type quali-
fiers [13, 9]. In this case, object instances enter an abstract state at construction-
time that they can never leave. Like other protocols, depending on the state the
object is in, certain method calls may be illegal. We will point out type quali-
fiers in this study even though they do not strictly fit our definition, as we feel
they are quite similar to more standard object protocols and because, like object
protocols, current languages do not check them statically.

Our definition specifically excludes protocols in which a type has an in-
finite number of abstract states. This is meant to exclude types such as
java.util.List on the basis of methods like List.remove(int). This method
throws an exception when the argument is greater than or equal to the size of the
list. While List could be interpreted as having the abstract states, LargerThan0,
LargerThan1, LargerThan2, etc., this does not fall under our definition, and will
not be considered a protocol.

4

Scope of this Study. Our definition of object protocol leaves out other object
protocols that some readers may consider to be important. For example, it does
not include multi-object protocols, in which clients must call an ordered sequence
of methods on two or more objects. One of the things we will show is that, even
when taking a restricted view of object protocols, they are still rather common.
By considering a more inclusive definition, we believe one would find that object
protocols are even more common.

We have observed that protocol classes frequently are implemented so that
they can detect protocol violations. Generally, violations that are detected will
cause an exception to be thrown (e.g., InvalidStateException).This is relevant
to our study because, within the scope of our definition of object protocol, our
automated analysis detects the subset for which this is true (see Section 2.2).

Other Definitions. Here are some other terms that will be used throughout the
remainder of the paper:

Phase 1 In the first phase of the study we examined the nature of protocol
definition.

Phase 2 In the second phase of the study we examined protocol use.
Candidate, Candidate Code A section of code that may represent evidence

of an object protocol, as reported by our static analysis.
Protocol Evidence A candidate that, after manual analysis, is determined to

be evidence of an object protocol (a true positive).
Evidence Class A class that contains protocol evidence.

2.2 Experimental Procedure

Our experiment consisted of several steps where we alternatingly performed
analyses, manual and automated, and gathered and processed their results. This
section presents the entire process from start to finish. For convenience, this
process is illustrated in Figure 1. At each step in the experiment, we will say
what data is gathered and why that particular course of action was chosen.

Phase 1: Finding Object Protocols In the first phase of our experiment,
we start with a set of programs in which we would like to find object protocols.
The first step is to run ProtocolFinder, a static analysis that will generate a list
of code candidates, locations in code that may indicate that a class is defining
an object protocol.

We had several goals in mind when developing the ProtocolFinder static anal-
ysis. For one, we wanted to keep the rate of false negatives as low as possible.
In this case, false negatives are protocols that exist in the programs under anal-
ysis that are not found. Manual inspection, of course, can have a very low rate
of false negatives but is extremely time consuming, particularly considering the
amount of code we would like to investigate. We desired an automated analysis.
Dynamic analyses for discovering protocols in running programs exist [15, 28].
Unfortunately, such approaches are quite susceptible to false negatives, since

5

ProtocolFinder

Examination

ProtocolUsage

4

prgms.

Candidate

Locations

Protocol

Evidence

Classes, Methods,

Overriden Methods

X

Protocol Methods,

Protocol Types
16

prgms.

Protocol

Categories

Legend:

X

Automated analysis

Manual analysis

Program under analysis

Result Data

Temporary Data

Information Flow

Correlation

Classes Calling

Protocol Methods

Classes with

Protocol Fields

P
h
a
s
e
 1

Random

Sample
Examination

Est. of Classes w/

Field Wrap Protocols

P
h
a
s
e
 2

Fig. 1. A schematic explaining the experimental procedure

appropriate test cases must be found to exercise all of the possible protocols in
an application. For the same reasons, a dynamic approach would require exam-
ining only programs that were accompanied by sufficient test cases, and thus,
was ruled out. By comparison, a static analysis can be run on any open-source
program. In the end, we decided to develop a conservative static analysis that
would eliminate many (although not all) false negatives while reducing manual
effort. A subsequent manual examination is used to eliminate false positives.

ProtocolFinder is a static analysis created for this study that attempts to
find object protocols by searching for locations in code where protocol violations
are detected. Specifically, it looks for locations in code where instance methods
throw exceptions as a result of reading instance fields.

The intuition behind the analysis is simple: In our preliminary investigations
we noticed that many protocol methods throw exceptions when object protocols
are violated. Because our definition of object protocol depends on some abstract
state of the method receiver, we expect that any exceptions thrown for proto-
col violation will be thrown in instance methods and as a result of reading an

6

1 // from java.util.concurrent.ArrayBlockingQueue .Itr

2 public void remove() {

3 final ReentrantLock lock = ArrayBlockingQueue .this.lock;

4 lock.lock();

5 try {

6 int i = this.lastRet;

7 if (i == -1)

8 throw new IllegalStateException ();

9 lastRet = -1;

10 // ... method continues

11 }

12
13 // from javax.swing.undo.AbstractUndoableEdit

14 public void undo() throws CannotUndoException {

15 if (!canUndo()) {

16 throw new CannotUndoException ();

17 }

18 hasBeenDone = false;

19 }

20
21 public boolean canUndo() { return alive && hasBeenDone ; }

Fig. 2. The ProtocolFinder reports candidate code on lines 8 and 16. Both are classified
as protocol evidence. In the first, the field lastRet flows through a local variable i. In
the second, the field value comes from a getter.

instance field. This pattern has been noted and used as the basis for existing pro-
tocol detectors [27, 2]. Like ProtocolUsage, described later, the ProtocolFinder
analysis is an Eclipse plugin whose source we have made freely available.1

ProtocolFinder. ProtocolFinder is a flow-insensitive static analysis that examines
every instance method in a given code base. Upon encountering an ‘if’ block or a
conditional expression, the analysis first examines the condition. If the condition
expression contains a read of a field of the current receiver (or a call to a “getter”
method on the current receiver), the analysis will examine both ‘then’ and ‘else’
branches. (“Getter” methods are methods which more or less immediately return
the value of a field.) If either branch of the conditional throws an exception the
analysis issues a report indicating that piece of code is a protocol candidate.
Both the field read in the condition and the throw statement in the branches
can be nested arbitrarily deeply. In order to determine whether an expression in
the condition is a field read or getter call on the current receiver, the analysis
queries a sub-analysis. This flow-sensitive static analysis has a list of all the
methods in the current class determined to be field getters, and can track if a
value in an intermediate variable flows from a getter or a field.

1 http://code.google.com/p/nolacoaster/

7

1 // from java.awt.Container

2 public void remove(int index) {

3 synchronized (getTreeLock ()) {

4 if(index <0||index >=this.component.size()){

5 throw new ArrayIndexOutOfBoundsException (index);

6 }

7 // ... method continues

8 }

Fig. 3. In the remove method the ProtocolFinder reports a possible protocol on line 5.
Note that the field, component, is nested in a sub-expression of the condition (line 4).
By manual examination, we have determined that this candidate is not evidence for
an object protocol.

The analysis uses a simple procedure to determine which methods are “get-
ter” methods. Any method with a non-void return type where all return state-
ments contain values that flow from field reads are marked as getters.

ProtocolFinder reports protocol candidates in the examples shown in Fig-
ures 2 and 3, all of which are from the Java standard library. In Figure 2,
reports are issued on lines 8 and 16. The first example comes from an imple-
mentation of the Iterator interface. It is noteworthy because the field value
flows from the lastRet field to the local variable i before the conditional. The
second example is noteworthy because the condition involves a call to the getter
method canUndo, which itself is the result of a combination of fields, alive and
hasBeenDone.

In Figure 3, ProtocolFinder reports a candidate on line 5. This example is
noteworthy because the field read that occurs on line 4 is nested within a sub-
expression of the condition. ProtocolFinder still treats the condition as being
dependent on a receiver field.

The output of the ProtocolFinder is thus a list of protocol candidates. In the
next part of the experiment, we manually inspect each candidate to determine
whether or not it is actually evidence of an object protocol. For each report
issued, the ProtocolFinder includes the line number and file name of the candi-
date, the method and class in which the candidate was found, and all methods
that are overridden by the method in which the candidate was found. This in-
formation helps us find the candidate for the purposes of manual examination,
and, in the event that a candidate represents evidence of an actual protocol, will
provide us with the data we need to carry out the usage phase of our study.

Manual Examination. After running the ProtocolFinder and gathering a list of
protocol candidates, we investigated each candidate by hand.2 The primary pur-
pose of this manual investigation was to determine which candidates were actual
evidence of object protocols and which were not. This was done by looking at

2 The bulk of the work of manual examination was performed by Duri Kim, a masters
student. Nels Beckman, a Ph.D. student, performed spot checks on these results.

8

the code location and the surrounding class and trying to understand its behav-
ior. Where possible, documentation was also examined. After understanding the
candidate and the conditions under which an exception would be thrown, we
consulted our own definition of object protocol in order to determine whether
or not the candidate represented protocol evidence.

As an example, consider the code snippets in Figures 2 and 3. Both were
returned as candidates by the ProtocolFinder. During manual analysis, both
candidates in Figure 2 were classified as evidence for actual protocols. Iterators
have RemovalPermitted and RemovalNotPermitted abstract states, transitioned
to and from by the next and remove methods. remove can only be called on
instances in the RemovalPermitted state. AbstractUndoableEditdefines several
abstract states but the undo method can only be called if an instance is both
Alive and HasBeenDone. The candidate in Figure 3, on the other hand, was
not categorized as protocol evidence. The exception is really thrown in response
to the state of the argument, not the receiver. Even if we wanted to abstract
the concrete state of the receiver to prevent the exception, the only reasonable
abstraction would require an infinite number of states.

For every candidate that is manually classified as evidence of a protocol, cer-
tain information is recorded and used in the second phase of the study. For each
piece of protocol evidence, we record the method in which it appears and the class
in which that method appears. These classes are referred to as evidence classes.
But we consider a larger set of types to be protocol-defining. The methods in
which protocol evidence appears, and every method they override or implement
are considered to be protocol methods. Additionally, any public method that
calls a private protocol method is considered to be a protocol method (if we
determine the private method to be part of the “state check” pattern, described
below). Finally, the types declaring each of the protocol methods are known as
protocol types. When we say in the introduction that 7.2% of types declare pro-
tocols, these are the types that we are referring to. As these terms will be used
frequently in the rest of the paper, we summarize:

Protocol Methods The methods containing protocol evidence, any methods
they override and, if a method containing protocol evidence is private, any
public method that calls it.

Protocol Types The classes and interfaces containing protocol methods.

Our inclusion of private methods and overridden methods is worth further
discussion. Regarding our inclusion of overridden methods, our logic here is that,
because of subsumption, any subtype may be known statically as its supertype.
When a subtype method is part of an object protocol, overridden methods are
also frequently part of a protocol, or at best clients must be aware that some
subtypes have usage protocols. Therefore, we want to consider calls to those
overridden methods as potential client-side uses of protocols.

This strategy addresses one limitation of the ProtocolFinder, that it cannot
detect Java interfaces that define protocols. If the implementing methods of an
interface have behavior that the ProtocolFinder recognizes as a protocol, then
the overriden interface methods will be added to our list of protocol methods.

9

java.lang.Runnable.run()

java.lang.Thread.run()

java.lang.Object.toString()

java.util.List.add(int,Object)

java.util.List.remove(int)

java.util.AbstractList .add(int,Object)

java.util.AbstractList .remove(int)

Fig. 4. Superclass and interface methods automatically considered to be protocol meth-
ods due to a subclass that we removed from our list of protocol methods. This was done
because these methods are widely used, but their contracts do not imply a protocol.

In a few cases, we removed overridden methods that were added to the
set of protocol methods by this process because we felt that the methods are
widely used and not normally considered to be part of a protocol. For exam-
ple, in the Java implementation of the Kerberos authentication protocol, the
KerberosTicket class defines a protocol of which its toString method par-
ticipates; if a Kerberos ticket has been destroyed, calling its toString method
results in an IllegalStateException. However, Object.toString should not
be considered a protocol method since most implementations do not have such
behavior, and it is so widely used that considering it to be one would result in
vastly distorted results. (In such situations, one may reasonably conclude that
behavioral subtyping was broken.) Figure 4 contains the full list of supertype
methods that were removed from the list of protocol methods because they do
not in general represent protocols. As far as we can tell, no other widely used
supertype methods were misclassified in this manner.

We included the public callers of private methods because we noticed a com-
mon pattern in many classes we encountered. Private methods cannot be called
outside of the class in which they are defined and as a result will never appear as
client usage in the second phase of our study. However, many classes have pri-
vate “state check” methods which verify that the instance is in some particular
state. These methods are called by multiple public protocol methods as a way
of avoiding code duplication. For example, the java.util.PrintStream class
defines a simple Open/Closed protocol, and once the stream has been closed,
there are essentially no methods that can be called on the stream. In order to
implement this without code duplication, the PrintStream method defines a
private ensureOpen method that is called first thing inside every public method
of the class. We want to make sure that we consider those public methods to
be protocol methods, even though our analysis does not report them, so we add
them when our manual analysis confirms this pattern.

During manual analysis of protocol candidates, two final pieces of data are
generated. One of the goals of our study is to determine if object protocols
share similar characteristics. Anecdotally, most protocols seem to be rather sim-
ple, and somewhat similar (e.g., Open/Closed, Initialized/Uninitialized) and we
wanted to determine if this was generally true. While manually examining each

10

potential protocol, we did our best to observe similarities and group them into
categories based on these similarities, using single coding. Rather than defining
the categories a priori, we constructed them as new similarities were observed.

Lastly, we are very interested in whether or not protocols are used in multi-
threaded applications. We would like to understand the relevance of protocol
checkers that work even in the face of concurrency, such as our own work [4] and
that proposed by Joshi and Sen [17]. So, for each piece of protocol evidence, we
recorded whether synchronization primitives (e.g., locks, monitors) were used in
the surrounding code. Such use indicates that the class has been designed to be
used on multithreaded programs.

Phase 2: Finding Protocol Usage In the second phase of the study, we
examined how often the protocols we discovered in the first phase were actually
used. The input of this phase is the list of protocol methods and protocol types
generated in the preceding phase. After running an automated analysis on a
suite of code, we were left with a list of all classes that called protocol methods
as well as a list of all classes that have fields whose types are protocol types, and
an estimate of the number of those classes that pass their fields’ protocols along
to their clients. The static analysis itself is rather simple.

ProtocolUsage. ProtocolUsage is a flow-insensitive static analysis. It proceeds
by visiting every method call site in a given code-base. At every method call
site, regardless of the receiver, the method binding is statically resolved, and the
method’s fully qualified name is noted. If the method is in the list of protocol
methods, a report is issued, unless the method call site is inside the same class as
the protocol method being called. Such a call would more accurately be described
as an internal interaction rather than a client-provider interaction.

Note that if a class calls protocol methods of its super-class this is considered
to be an client interaction with a protocol-defining class, even though at run-
time there is only one object. A sub-class can validly be considered to be a client
of its super-class, in the sense that a programmer extending another class must
be aware of and understand the super-class’s rules of use.

ProtocolUsage also looks for instance fields whose types are protocol-defining.
In this part of the analysis, at every field declaration, the field’s type is resolved.
If this type is contained in the list of protocol types, a report is issued.

We are interested in fields of protocol type because they may potentially
represent an even closer level of interaction with a protocol-defining type. Since
objects referenced by fields are in the heap and may be accessed at any time by
member methods, it is more difficult for programmers to obey their protocols
than objects that are simply passed and returned amongst methods. Addition-
ally, in our experience it is often the case that classes with fields that define
protocols expose those protocols to their own clients.

Manual Examination. While we did not have the time to investigate all of the
fields of protocol type, we did want to get an estimate of the number of classes

11

acting as protocol wrappers, passing on the protocols of their fields to their
clients. To this end we took a random sample of the classes containing fields of
protocol types (approximately 7%) and we manually investigated those classes
to see whether or not the protocols of the fields were passed on to their classes.
We recorded whether or not this was the case, and used the rate of protocol
passing-on to get a rough estimate for the entire suite of phase two programs.

This is the end of the second phase of our study.

2.3 Programs Under Analysis

We ran the ProtocolFinder tool on four open-source programs, in order to find
out how many protocols they defined. We then ran the ProtocolUsage analysis
on those four plus twelve additional programs to determine how often code acts
as a client to protocol-defining code.

All of the programs we analyzed in both phases are shown in Table 1, along
with their sizes descriptions. With the exception of the standard library and our
own analysis framework, Crystal, they all come from the Qualitas Corpus [24].
We attempted to select relatively large, popular open-source programs, and to
have a mix of library/framework software as well as end-user applications. By
choosing a wide variety of programs we reduce the risk that the programs we
analyzed contain abnormally many (or few) protocols. The desire to include both
libraries/frameworks and end-user applications is based on our own intuition. We
hypothesized that libraries and frameworks are more likely to define types with
object protocols since they may be wrapping some underlying system resources
that is inherently stateful (e.g., sockets and files).

During the course of the study we examined 1.9 million lines of Java, of
which 1.2 million was used in the first phase of the study, and of that portion,
one million of which is the Java standard library. Examining the Java standard
library for object protocols was a high priority. Because of its wide use in most
Java programs, knowing which types in the standard library define protocols
enables us to analyze client usage of protocols in many more programs. In fact
almost all of the client-side protocol usage in our study was usage of standard
library types. This makes sense since, for example, Ant is unlikely to use any
protocols defined in PMD, Azureus or JDT and we do not know any of the
protocols it defines, since it was not part of the first phase of our study.

2.4 Risks

There are a number of potential risks and threats to validity in the study as
designed. Here we discuss some of those risks, as well as mitigating factors.

Some of the most interesting risks in our study are due to our use of static
analysis. The use of static analysis is motivated by our desire to examine as large
a corpus of programs as possible. Unfortunately, this means the study is subject
to the false negative and false positive rates of our static analysis, particularly
the ProtocolFinder. For the ProtocolFinder, false negatives are instances where
the analysis is run on a piece of code that defines an object protocol and yet the

12

Table 1. The programs analyzed as part of this study, along with their sizes and
descriptions

Program L/F or Version LOC Classes Description
App. (Interfaces)

Phase I: Programs analyzed for protocol definition and usage.

JSL L/F jdk1.6.0 14 1,012,860 8,485 (1,761) Java standard library

PMD A 3.1.1.0 26,586 396 (27) Static analysis

Azureus A 3.3.2 102,119 900 (354) BitTorrent client

Eclipse (JDT
core)

L/F 3.3 99,691 300 (41) IDE Framework

Phase II: Additional programs analyzed for protocol usage.

ant A 1.7.1 91,679 962 (71) Build tool

antlr A 2.7.7 41,880 186 (35) Lexer/parser tool

aoi A 2.5.1 81,597 438 (26) 3D modeler

columba A 1.0 68,267 982 (109) GUI email client

crystal L/F 3.4.1 17,052 187 (66) Static analysis
framework

drjava A 20050814 59,114 639 (79) Educational IDE

freecol A 0.7.4 62,641 434 (21) Civilization clone

log4j L/F 1.2.13 13,784 178 (16) Logging library

lucene L/F 1.4.3 25,472 276 (15) Text search library

poi L/F 2.5.1 47,804 417 (28) Microsoft document
library

quartz L/F 1.5.2 22,171 121 (25) EJB scheduling
framework

xalan L/F 2.7.0 161,008 1,004 (65) XSLT XML transfor-
mation engine

Total 8×A 1,933,725 15,905 (2,739)
8×L/F

L/F=Library or Framework A=Application

analysis does not report a candidate. False positives are the protocol candidates
that are not classified as protocol evidence. False positives are mitigated by
manual inspection. Every candidate reported by the ProtocolFinder has been
manually inspected to determine whether or not it represents protocol evidence.

However, we can imagine several potential sources of false negatives. The first
source is that the ProtocolFinder can only investigate code, and that code must
be written in Java. This rules out protocols that are defined by Java interfaces,
which contain no code, and native methods, which are written in other languages.
We mitigate the former case with our inspection process: when a method is
determined to be a protocol method, we note the supertype methods it overrides
and add them to our list of protocol methods for use in subsequent phases of
the study. For native methods, though, there is not much that we are able to do.

13

Still, of the 120,085 methods we analyzed in the first phase of the study, only
739 were native methods, suggesting that we might not be missing much.

Another source of false negatives comes from code that does not attempt to
detect protocol violations, in other words, protocol-defining code that does not fit
the pattern that the ProtocolFinder is looking for. The ProtocolFinder requires
code to check or use the value of a receiver field inside a conditional expression
and then throw an exception in one branch of the conditional. APIs that fail in
an undefined manner when their protocols are violated likely would not fit this
pattern. As an example, consider a class defining an initialization protocol, which
will throw a null pointer exception if its methods are called before initialization
due to null fields. Such a protocol would likely not be detected by our analysis.
We believe that well-designed code will generally attempt to detect violations of
its own protocols. However, this scenario is likely a source of real false negatives.

Similarly, APIs that define protocols due to their delegation to other, protocol-
defining APIs may be missed by our ProtocolFinder. For example, an enhanced
stream that wraps another stream, and delegates calls may define a protocol
that is very similar to the underlying stream. While we do not have a direct
way of finding these protocols, we are attempting to gage how likely they might
be by reporting the number of classes whose fields themselves define protocols.
Then, based on a manual examination of a sample of those classes, we estimate
the number of unexamined classes that delegate the protocols of their fields.

Lastly, we have the typical threats of any empirical study: that our selection
of programs may be biased, not representative, or too small to draw meaningful
conclusions. We have done our best to draw a variety of programs from a re-
spected corpus of popular Java programs [24] that was as large as possible given
our time constraints.

3 Results

In this section we present the results of our study3, with little additional dis-
cussion. Discussion of the results is postponed until Section 4. The results of
running the ProtocolFinder analysis are discussed in Section 3.1, categories of
protocols we found are discussed in Section 3.2 and the results of running the
ProtocolUsage analysis are discussed Section 3.3.

The summary is that a little over 2.2% of all classes on which we ran our
ProtocolFinder define protocols. 7.2% of all types are considered to define pro-
tocols when we include supertypes, and approximately 13.3% of all the classes
on which we ran our ProtocolUsage analysis use object protocols as clients. 98%
of the protocols we found fit into one of seven simple categories.

3.1 Protocol Definitions

Table 2 contains the results of running the ProtocolFinder analysis on the four
code bases in phase one. The first column contains the number of candidates

3 All the data gathered during this study can be found at the following location:
http://www.nelsbeckman.com/research/esopw/

14

Table 2. The results of running the ProtocolFinder on the four phase one code bases

Program Protocol Protocol E.C. P.T. T.S.E.C. Precision %E.C. %P.T.
Candidates Evidence

JSL 2,690 613 195 842 54 22.8% 2.3% 8.2%

PMD 32 7 3 10 0 21.9% 0.8% 2.4%

Azureus 136 24 19 32 4 17.6% 2.1% 2.6%

JDT 62 4 4 5 0 6.5% 1.3% 1.5%

Total 2,920 648 221 889 58 22.2% 2.2% 7.2%

T.S.E.C.=Thread-Safe Evidence Classes E.C.= Evidence Classes
P.T.= Protocol Types

reported by the ProtocolFinder analysis. These varied from around 2,600 for the
Java standard library to 32 for PMD. The next column shows how many candi-
dates were manually classified as protocol evidence. The next column shows the
number of classes containing protocol evidence, followed by a column showing
the number of types classified as protocol types. (Recall that our list of protocol
types includes classes and interfaces containing methods overridden by meth-
ods containing evidence of protocols.) Next, “Thread-Safe Evidence Classes”
displays how many classes containing protocol evidence use mutual exclusion.
Since we are interested overall in how well our analysis is performing, the next
column shows the precision of the ProtocolFinder: the ratio of protocol evidence
to protocol candidates. The last two columns show the percentage of classes con-
taining protocol evidence relative to the total number of classes and the number
of protocol types relative to the total number of types. The last row displays cu-
mulative values for each column, and percentages recalculated from these sums.

3.2 Protocol Categories

Of the 613 candidates in JSL that were manually determined to be protocol
evidence, we noticed a number of similarities in their structure and intent. In
fact, almost all of them could be characterized in one of seven protocol cate-
gories, which we will describe in this section. Due to the means by which our
analysis produces candidates, the categories we present are largely categories of
errors: conditions under which operation of a class will result in an error. Table 3
summarizes the results for each category. More details on each category can be
found in Duri Kim’s masters thesis [18].

Initialization (28.1%) Some types must be initialized after construction time
but before the object is meant to be used. In the initialization category, calls to
an instance method m after construction-time will result in an error unless an
initializing method i has been called at least once before. Types may (or may
not) allow i to be called multiple times, however, it is a feature of this category
that objects cannot become uninitialized after they have already been initialized
(i.e., initialization is monotonic).

15

A typical example of this category is the protocol defined by the Java library
class AlgorithmParameters in the package java.security. After an instance of
algorithm parameters is constructed, it is not ready for use until one of its three
init methods is called. Before initialization, calls to the toString method will
return null, and calls to getEncoded and getParameterSpec throw an exception.

Deactivation (25.8%) Some types permit deactivation, after which point in-
stances can no longer be used. In the deactivation category, calls to an instance
method m will fail after some method d is called on the same instance, and it
will always fail for the rest of the object’s lifetime. Like initialization, types may
or may not permit d to be called more than once.

A typical example is the BufferedInputStream in the package java.io.
Once a stream is closed, no further methods can be called on the stream, and
it cannot be reopened. A somewhat more interesting example is FreezableList
from com.sun.corba.se.impl.ior. This is a normal mutable list that, at some
point during its lifetime, can be made immutable by calling the makeImmutable
method. After this point mutating methods, like remove, can no longer be called.
(This is in direct contrast to other immutable lists, like those created by Collec-
tions.unmodifiableList, which are immutable for the entire object lifetime.)

Type Qualifier (16.4%) Some types disable certain methods for the lifetime of
the object. In the type qualifier category, an object instance will enter an ab-
stract state S at construction-time which it will never leave. Calls to an instance
method m, if it is disabled in state S will always fail. This category is so-named
since it is similar in spirit to flow-insensitive type-qualifiers [13, 9].

Protocols in this category show two distinct behaviors. In some cases, the
abstract state that newly constructed instances inhabit can be set by parame-
ters to the constructor. For example, instances of the ByteBuffer type in the
java.nio package may or may not be backed by a byte array. Whether or not
they are depends solely on whether or not a backing array was provided at
construction-time. If one was not provided, any calls to the array method will
fail with a run-time exception. In other cases, the instantiating class itself deter-
mines the abstract state that all instances will inhabit, relative to the abstract
states defined in a super-type. For example, consider the instances returned
from calls to Collections.unmodifiableList in the Java standard library. All
such instances are unmodifiable relative to the super-type List, which permits
both mutable and immutable lists. In both case, clients must be aware of which
methods are enabled.

Dynamic Preparation (8.0%) Certain methods cannot be called until a different
method has been called to ready the object. In the dynamic preparation category,
an instance method m will fail unless another instance method p is called before
it. If we think of types in this category as having two states, ready and not
ready, this category is distinguished from the initialization category in that an
object may dynamically change from ready to not ready at numerous points in
its lifetime (i.e., it is not monotonic).

16

The most familiar example of this category is the remove method on the
Iterator interface. An iterator’s contract states that the removemethod cannot
be called until next has been called, and clients must continue to call the next
method at least once before each time the remove method is called.

Boundary (7.9%) Some types force clients to be sure that an instance is still “in
bounds.” In the boundary category, an instance method m can only be called
a dynamically-determined number of times. Calling m more times will result
in an error. Typically such types will provide some method c to clients so that
they can determine if an subsequent call to m is safe, although clients are not
required to call it. We can abstract this into a finite number of states by having
is in bounds and isn’t in bounds abstract states.

A widely known example of this category is the iterator. In an iterator, the
next method can only be called if the iterator is at a location in the iterated col-
lection where there are subsequent items. Iterators provide the hasNext method
allowing clients to check dynamically if this is the case.

Redundant Operation (7.3%) In the redundant operation category, a method m

will fail if it is called more than once on a given instance.
For an example of this category, consider the AbstractProcessor class, lo-

cated in the javax.annotation.processing package. If the init method is
called more than once, the second call will fail. One might wonder, given the
name of the method, why this is not considered to be part of the initialization
category. The answer has to do with the fact that our categories are oriented
towards errors. In the initialization category, methods on an object will fail if
the object has not already been initialized. Here, the failure occurs when the
init method is called a second time.

Domain Mode (4.8%) The domain mode category captures protocols for objects
that very closely model a domain. In these objects, various “modes,” which
are domain-specific, can be enabled and disabled, which in turn cause certain
methods related to those modes to be enabled or disabled.

As an example, consider the ImageWriteParam class in the javax.imageio
package. An image may be written with or without compression. Im-
ageWriteParam objects control whether and how compression is used for other
image objects. The ImageWriteParam class defines several compression modes,
“no compression,” “explicit,” and “writer-selected.” The parameter’s setCom-
pressionType method can only be called when the parameter is in “explicit”
compression mode.

Others (1.9%) Finally, there were a smattering of protocols that did not fit
any of the previously-mentioned categories, although even these protocols them-
selves have certain similar characteristics. As examples, we encountered a few
instances of types that defined methods that must be called in strict alternation
(a single call to method A enables a single call to method B and vice versa).
We also found a limited number of protocols that we would describe as lifecycle

17

Table 3. Categorization of each of the 648 reports issued by the ProtocolFinder that
were evidence for actual protocols.

Category Protocol Evidence %

Initialization 182 28.1%

Deactivation 167 25.8%

Type Qualifier 106 16.4%

Dynamic Preparation 52 8.0%

Boundary 51 7.9%

Redundant Operation 47 7.3%

Domain Mode 31 4.8%

Others 12 1.9%

methods, where a type defines more multiple abstract states through which an
object transitions monotonically during its lifetime. For example, the GIFIm-
ageWriter and JPEGImageWriter classes in the Java imageio library seem to
have this behavior. While we did not encounter many lifecycle protocols, our
own experience with Object-Oriented frameworks suggests that they may be
more common elsewhere.

3.3 Protocol Usage

Table 4 shows the results of running the ProtocolUsage analysis on the sixteen
candidate programs from phase two of the study. The goal here is to see how
often classes act as clients of other protocol-defining types. The table contains the
following information: The first column after the list of programs is the number of
classes in that program that contain calls to protocol methods. The next column
shows the percentage of classes in each program that use protocol methods.
These numbers range from 4% of all classes using protocols, on the low end, to
28% of all classes on the high end. The next two columns show the number and
percentage of classes that have fields whose types are protocol-defining types.
The column, “Exposes Protocol Rate” shows the percentage of the classes with
protocol fields that were found to expose the protocols of those fields to their own
clients, of the 7% of classes with protocol fields that we sampled. The column,
“Est. Classes From Total” is an estimate of the total number of classes that
expose protocols defined by their fields based on this rate. The last two rows
show the totals and cumulative percentages for the entire suite, as well as the
numbers excluding the Java standard library.

We were also interested in finding out which protocol methods were being
called most frequently, and Table 5 summarizes this information. This table
contains a list of the fifteen most frequently called protocol methods. During our
examination of the sixteen open-source code bases used in phase two, we found
7,645 calls to protocol methods. We took all the protocol methods that were
called, and ordered them by how many times they were called. Table 5 shows
the 15 most frequently called protocol methods along with the number of times

18

Table 4. The results of running the ProtocolUsage analysis on the sixteen candidate
code bases.

Program Classes Calling %Classes w/ % Exposes Est. Classes
Protocol Methods Prot. Fields Protocol Rate From Total

JSL 1012 12% 1082 13% 15% 157

PMD 85 22% 29 7% 0% 0

Azureus 198 22% 763 8% 31% 234

JDT 13 4% 18 6% 0% 0

ant 269 28% 187 19% 20% 37

antlr 20 11% 16 9% 0% 0

aoi 25 6% 37 8% 0% 0

columba 120 12% 246 25% 8% 18

crystal 9 5% 2 1% 0% 0

drjava 49 8% 107 17% 0% 0

freecol 94 22% 117 27% 0% 0

log4j 39 22% 32 18% 0% 0

lucene 30 11% 27 10% 0% 0

poi 41 10% 13 3% 100% 13

quartz 16 13% 10 8% 0% 0

xalan 91 9% 142 14% 13% 17

Total 2111 13% 2141 13% 17% 356

W/O JSL 1099 15% 1059 14% 18% 196

that method was called in our candidate programs and the percentage of the
7,645 protocol method calls that particular method constitutes. For example, the
next method of the Iterator interface was the most-frequently called protocol
method in our study. Of the 7,645 calls to protocols we found, over 2,200 were
calls to Iterator.next, almost 30% of the calls.

4 Discussion

After running our experiment, we noticed some interesting results. Protocols
were defined with small, but significant, frequency and almost all of those proto-
cols fit within a small number of categories. All of the protocols we expected to
find we did find, which gives us some confidence in our approach. And a signifi-
cant number of classes in our study use protocols as clients, even though almost
all of the protocols we were looking for were defined in the Java standard library.
Interestingly, but not surprisingly, there are a few protocols that are much more
widely used than others.

4.1 Sanity Check

As discussed in Section 2.4, we were curious about the ProtocolFinder’s false-
negatives: protocols that were defined in the code under analysis but not dis-
covered due to the design of the analysis. One quick sanity check we can do is

19

Table 5. The 15 most-frequently called protocol methods, out of a total of 7,645 calls
to protocol methods, and percentage occurrence of each method relative to the total.

Method Calls % Calls

java.util.Iterator.next() 2226 29.11%
java.util.Enumeration.nextElement() 1022 13.37%
java.lang.Throwable.initCause(Throwable) 850 11.12%
org.w3c.dom.Element.setAttribute(String,String) 460 6.02%
java.util.Iterator.remove() 211 2.76%
java.io.Writer.write(int) 182 2.38%
java.io.OutputStream.write(int) 165 2.16%
java.io.InputStream.read() 162 2.12%
sun.reflect.ClassFileAssembler.cpi() 138 1.81%
org.omg.CORBA.portable.ObjectImpl. get delegate() 90 1.18%
java.io.InputStream.read(byte[],int,int) 89 1.16%
java.util.ListIterator.next() 80 1.05%
java.io.Writer.write(char[],int,int) 77 1.01%
java.io.PrintWriter.flush() 76 0.99%
java.io.OutputStream.flush() 75 0.98%

to make sure that all the protocols we already know about are found by our
analysis. This is not perfect, since our ProtocolFinder was designed with these
protocols in mind. Still, it is somewhat comforting to see that all of the protocols
we have encountered in our own work, and in similar works are found by our
analysis.

We expected to see sockets, files, streams and iterators in our results, since
those types are widely discussed in related work. And with the exception of
the actual java.io.File class, which does not define a protocol, we were not
disappointed. Socket, Readers, Writer, Streams and all their related classes did
turn up in our analysis. (Interestingly, ZipFile does define an Open/Closed
protocol.) We were also previously aware of the Throwable and Timer protocols.

Additionally, we were happy to see that well-known protocol-defining inter-
faces, like Iterator, were discovered through our process, since, for interfaces,
the ProtocolFinder has no code to examine.

4.2 Widely Used Protocols

We were quite interested, although not surprised, by the fifteen most frequently
called protocol methods, shown in Table 5. The iterator protocol, examined in
several recent works [6, 20], appears at the top of the list, and the next method
of the iterator protocol accounts for nearly a third of all protocol method calls.4

4 It is worth noting that the hasNext method, which we would generally consider to be
part of the Iterator’s protocol, does not show up at all in our list of protocol methods.
This is due to the fact that the implementations of hasNext do not normally partake
in protocol violation detection by throwing an exception.

20

While this seems rather uninteresting, it does suggest two points. One, that
the time spent evaluating protocol checkers against the iterator interface may
be well-spent, since a good iterator-checker can check a large portion of the
protocols that are used in practice. Second, all of the calls recorded are actual
calls to Iterator.next, and not instances of Java 5’s enhanced for loop. While
at present, these do represent actual protocol uses, where the client needed to
understand the Iterator’s protocol in order to use it, one suspects that many of
these calls could be replaced by the enhanced for loop, which would dramatically
reduce the number of protocol clients we observed. (The same cannot be said
for calls to Iterator.remove.)

The remaining frequently called methods quickly drop off in the frequency of
their use. The most-frequently called list leaves something like forty percent of
all protocol method calls off. This suggests that most protocols, like most APIs
in general, have a small number of clients. Most of the commonly used protocols
are quite recognizable: readers, writers, streams and certain collections defining
abstract states. Interestingly, when we remove recognizable types (e.g., streams,
sockets, files, iterators, throwables and their subclasses) we found that what
was left accounted for 21% of all protocol usage. This means there is still a fair
amount of use of non-obvious protocols.

4.3 Protocol Categories

We were pleasantly surprised to discover that a small number of categories
(seven) could be used to classify almost all of the protocols that we encountered
(98%). This is useful because it suggests a new evaluation criteria for develop-
ers of typestate checkers. Unless a typestate checker can verify protocols from
each of these seven categories, it is unlikely that it will work on most practical
examples. Of course, many of the interesting challenges in protocol verification
come from the context in which the protocols are used, for example whether or
not the relevant objects are aliased [7]. Still, these categories can help to guide
analysis evaluation.

It is also interesting that the categories produced during this study have the
flavor of “protocol primitives,” and this may have something to do with how
the study was carried out. To illustrate, one may have noticed that none of the
categories that we found have more than two abstract states. Yet this does not
mean that none of the types we investigated had more than two abstract states.
Our study proceeded by investigating each location of interest as determined by
the ProtocolFinder. We tried to understand only enough of the implementation
to determine whether or not we were seeing evidence for a protocol, the state
that the class should be in in order not to have that particular exception thrown,
and which state the class is in if the exception is thrown. But classes can have
different pieces of a protocol that fit into different categories or even multiple
protocol pieces that are all in the same category. As an example of the latter
case, consider the Socket class in java.net. A socket instance can be open or
closed, its “write-half” can be open or shut down. Both aspects of the protocol

21

are categorized as deactivation check protocols, but if one to is to consider the
class’ protocol in total, it would have at least four abstract states.

All of this is to say that there may be interesting characteristics shared
by protocol-defining types that are not captured by our categories. Coming to
a better understanding of protocols at a larger level of granularity, while an
interesting topic for future work, is out of the scope of this study.

4.4 Other Observations

A number of other points can be made by examining the results of our study.
First, object protocols are relatively common. Without context, 7.2% of the types
analyzed may not sound like an enormous amount, but consider that, according
to a simple analysis, just 2.5% of the 10,246 types in the Java library define Java
“Generic” type parameters, a widely heralded new feature of the language.

One point suggested by the data is that protocol use (13% of all classes)
is more common than protocol definition (7.2% of all types). This information
suggests that client-side protocol checking may be more important than imple-
mentation-side checking. Certain protocol-checking approaches have the ability
to verify both the correct use of protocols by clients and the correct implementa-
tion of protocols by their providers. Such is the case for the approach presented
by Bierhoff and Aldrich [6]. While provider-side checking may be important in
some situations, a good client-side protocol checker may give programmers the
most bang for the buck.

In Table 4 we showed that 13% of all classes have fields whose types are pro-
tocol types. From the 7% of those classes we manually examined in our random
sample, 17% of them were found to expose the protocols of their fields to their
clients. Extending this rate to the entire set of classes with protocol fields, we
estimate that something like 356 of the classes in the phase two programs define
object protocols simply because of the ways in which their fields must be used.
This represents about 2% of all of the classes we examined in the entire study,
and, if accurate, is a significant increase in the percentage of protocol types.

Of all the classes defining protocols, the percentage implemented with syn-
chronization primitives was significant. Out of 221 classes containing protocol
evidence, 58 of them, or 26.2% were designed to be accessed by multiple threads
concurrently. If protocol checking is considered an area of research interest, this
suggests that those checkers should be designed with multi-threading in mind.

We did not observe conclusively that protocols were more likely to be defined
by libraries and frameworks than by applications. However, the Java standard
library when considered separately, has a much higher percentage of its types
classified as protocol-defining (8% vs. approximately 2%). There could be some
truth to the idea that code wrapping underlying system resources is more likely
to define protocols. However, given our process of gathering protocol types, it
might alternatively suggest that the standard library has a deeper type hierarchy.

For protocol usage, there was some difference observed. In programs that we
classified as applications, 17.4% of classes acted as clients of protocol-defining
methods. For library and framework code, that rate was 11.4%.

22

We were interested in the variety of types that define protocols. As evidenced
by the small number of protocol categories, these protocols were often quite
similar, but in fact the contexts in which they were defined vary greatly. This
answered one of the questions that helped to motivate this study: Are there any
protocol types beyond files, sockets and iterators? We can say, confidently, that
the answer is yes. The following list shows just a few of the examples we found:

Security com.sun.org.apache.xml.internal.security.signature.Manifest,
java.security.KeyStore

Graphics java.awt.Component.FlipBufferStrategy,
java.awt.dnd.DropTargetContext

Networking javax.sql.rowset.BaseRowSet,
javax.management.remote.rmi.RMIConnector

Configuration javax.imageio.ImageWriteParam,
java.security.AlgorithmParameters

System sun.reflect.ClassFileAssembler, java.lang.ThreadGroup
Data Structures com.sun.corba.se.impl.ior.FreezableList, java.util.Vector
Parsing net.sourceforge.pmd.ast.JavaParser,
org.eclipse.jdt.internal.compiler.parser.Scanner

4.5 Future Work

Our study suggests a number of potential avenues for future work. For one,
the simple static analysis, ProtocolFinder, developed for this study, while use-
ful, is not sound with respect to our own definition of object protocol. Better
analyses will likely find even more protocol definitions in the same code base.
Alternatively, widening the definition of object protocol to include more object
behaviors, will also likely result in finding more object protocols in the same
code base, and a wider definition may be of interest to certain researchers.

As discussed in Section 4.3, our current protocol categories are in some sense
“micro-categories:” primitive categories from which larger behavioral patterns
might emerge. An interesting task for future work is to examine these larger
behavioral entities to see if they share common characteristics.

Finally, even if object protocols are common, an interesting question to ask is
whether or not they lead to program defects. Studying the correlation between
protocol definition and use in a code base and the quality of that code may help
to answer this question.

5 Related Work

The problem of finding classes that define protocols is one of protocol inference,
and there has been some work in this area. The two most closely-related studies
were done by Weimer and Necula [26] and Whaley et al. [27].

Weimer and Necula [26] performed a study on open-source software that in
some ways is similar to ours. In their work, they were looking for violations of
resource-disposal protocols. For example, a connection to a database that must

23

be closed eventually, ideally as soon as it is no longer needed. They examined
over four million lines of open-source Java code and found numerous violations of
these sorts of protocols. This study, while quite interesting, differs from ours in a
number of ways. First off, their focus was on finding violations of protocols rather
than characterizing the nature and use of protocols (correct or otherwise) as we
have done. While they did look for protocol violations, they made no systematic
attempt to discover automatically the types that define such protocols. Rather,
they started their experiments with a known list. Additionally, their notion of
protocol and our notion of protocol do not quite overlap. They consider protocols
to be instances on which some operation must eventually be performed. The
protocols we consider, protocols in which calling a method at the wrong time
will lead to an error, are not considered in their work.

Both Whaley et al. [27] and Alur et al. [2] have developed effective tools for
statically inferring protocol definition. Whaley et al. [27] present a dynamic and
a static analysis for inferring object protocols. Their static analysis is inspired
by the same reasoning that ours is, and the description contains an in-depth
discussion of the practice of “defensive programming,” which is what we have
described here as detection of protocol violations. The dynamic analysis they
propose can infer more complex protocols than the static analysis. While our
experiments cover some of the same ground as theirs (both examine the Java
standard library) our focus is different. Their primary focus is on the analyses
themselves, with the frequency and character of the protocols taking a back-
seat. Their largest studies were performed using the dynamic analysis, and so in
some ways are not comparable since not all of lines of code are executed during
dynamic analysis. Our best estimate is that their study covered approximately
550 thousand lines of source, compared with 1.2 million lines of source covered in
phase one of our study. Numbers are only reported for the Java standard library
experiment. They report that 81 of 914 classes define protocols. Our experiments
for version 1.6.0 14 report that 195 of 8,485 classes define protocols, and show
how much the Java standard library has grown since version 1.3.1! Still, their
work contains some discussion of the relevant methods and interesting features
of these object protocols. Our work contains a more systematic description of
the protocols encountered, including a classification of those protocols. Lastly
their static analysis seems to be more precise. It can detect protocol violations
that result in null pointer exceptions, which ours cannot.

Alur et al. [2] propose a related static protocol detector that also seems to
be more precise than ours. They also looked at the Java standard library, albeit
just a handful of classes. While either of these static analyses might have made
a better candidate for our own study, neither are publicly available.

In fact, a large number of other approaches have been proposed for automat-
ically inferring object protocols, both static and dynamic (e.g., [1, 25, 15, 28],
Pradel et al. [21] give a good overview). While a more precise static analysis may
help the accuracy of our findings it does not affect our overall conclusions. It is
our position that dynamic inference is inappropriate for our needs, since using
these analyses requires, at a minimum, test cases to exercise parts of code that

24

use protocols. In our attempt to find as many protocols as possible in as much
code as possible, finding test cases has proved to be quite difficult.

6 Conclusion

In this paper we presented an empirical study that examined several popular
open-source Java programs. The goal was to determine the true nature of object
protocols; how often they are defined, how often they are used, and in what
way those protocols are similar. In order to examine as much code as possible,
which can help us draw broad conclusions, we developed two static analyses,
ProtocolFinder and ProtocolUsage, which help us find where protocols may be
defined and where they are used. ProtocolFinder in particular may be subject
to false negatives, but regardless was able to find many of the most commonly
discussed object protocols.

We found that object protocols are occasionally defined (on average, 7.2% of
all types were found to define protocols) but more commonly used (on average,
13% of classes acted as clients of protocols). A small number (seven) of rather
simple protocol categories were used to classify almost all of the found protocols.

Acknowledgments Support provided from ARO grant #DAAD19-02-1-0389 to
CyLab, and CMU|Portugal Aeminium project #CMU-PT/SE/0038/2008.

References

1. M. Acharya, T. Xie, J. Pei, and J. Xu. Mining API patterns as partial orders
from source code: from usage scenarios to specifications. In ESEC-FSE ‘07,
pages 25–34. ACM Press, 2007.

2. R. Alur, P. Černý, P. Madhusudan, and W. Nam. Synthesis of interface
specifications for java classes. In POPL ‘05, pages 98–109. ACM Press,
2005.

3. T. Ball and S. K. Rajamani. Automatically validating temporal safety prop-
erties of interfaces. In SPIN ‘01, pages 103–122. Springer-Verlag New York,
Inc., 2001.

4. N. E. Beckman, K. Bierhoff, and J. Aldrich. Verifying correct usage of atomic
blocks and typestate. In OOPSLA ’08. ACM Press, 2008.

5. K. Bierhoff and J. Aldrich. Lightweight object specification with typestates.
In ESEC-FSE ‘05, pages 217–226, Sept. 2005.

6. K. Bierhoff and J. Aldrich. Modular typestate checking of aliased objects.
In OOPSLA ‘07, pages 301–320. ACM Press, 2007.

7. K. Bierhoff, N. E. Beckman, and J. Aldrich. Practical API protocol checking
with access permissions. In ECOOP ‘09, pages 195–0219, July 2009.

8. R. DeLine and M. Fähndrich. Enforcing high-level protocols in low-level
software. SIGPLAN Not., 36(5):59–69, 2001.

9. J. Dunfield and F. Pfenning. Tridirectional typechecking. In POPL ‘04,
pages 281–292. ACM Press, 2004.

25

10. M. Fahndrich and S. Xia. Establishing object invariants with delayed types.
In OOPSLA ‘07, pages 337–350. ACM Press, 2007.

11. G. Fairbanks, D. Garlan, and W. Scherlis. Design fragments make using
frameworks easier. In OOPSLA ‘06, pages 75–88. ACM Press, 2006.

12. S. J. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geay. Effective
typestate verification in the presence of aliasing. ACM Trans. Softw. Eng.
Methodol., 17(2):1–34, 2008.

13. J. S. Foster, R. Johnson, J. Kodumal, and A. Aiken. Flow-insensitive type
qualifiers. ACM Trans. Program. Lang. Syst., 28(6):1035–1087, 2006.

14. M. Gopinathan and S. K. Rajamani. Enforcing object protocols by com-
bining static and runtime analysis. In OOPSLA ‘08, pages 245–260. ACM
Press, 2008.

15. A. Heydarnoori, K. Czarnecki, and T. T. Bartolomei. Supporting frame-
work use via automatically extracted concept-implementation templates. In
ECOOP ‘09, pages 344–368. Springer-Verlag, 2009.

16. C. Jaspan and J. Aldrich. Checking framework interactions with relation-
ships. In ECOOP ‘09, pages 27–51. Springer-Verlag, 2009.

17. P. Joshi and K. Sen. Predictive typestate checking of multithreaded Java
programs. ASE ‘08, pages 288–296, Sept. 2008.

18. D. Kim. An empirical study on the frequency and classification of object
protocols in Java. Master’s thesis, Korea Advanced Institute of Science and
Technology, 2010.

19. P. Lam, V. Kuncak, and M. Rinard. Generalized typestate checking using
set interfaces and pluggable analyses. SIGPLAN Not., 39(3):46–55, 2004.

20. N. A. Naeem and O. Lhotak. Typestate-like analysis of multiple interacting
objects. In OOPSLA ‘08, pages 347–366. ACM Press, 2008.

21. M. Pradel, P. Bichsel, and T. R. Gross. A framework for the evaluation of
specification miners based on finite state machines. In ICSM ‘10, 2010.

22. X. Qi and A. C. Myers. Masked types for sound object initialization. In
POPL ‘09, pages 53–65. ACM Press, 2009.

23. R. E. Strom and S. Yemini. Typestate: A programming language concept
for enhancing software reliability. IEEE Trans. Softw. Eng., 12(1):157–171,
1986.

24. E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe, H. Melton,
and J. Noble. Qualitas corpus: A curated collection of Java code for
empirical studies. In 2010 Asia Pacific Software Engineering Conference
(APSEC2010), Dec. 2010. Corpus version 20090202r.

25. A. Wasylkowski, A. Zeller, and C. Lindig. Detecting object usage anomalies.
In ESEC-FSE ‘07, pages 35–44. ACM Press, 2007.

26. W. Weimer and G. C. Necula. Finding and preventing run-time error han-
dling mistakes. SIGPLAN Not., 39(10):419–431, 2004.

27. J. Whaley, M. C. Martin, and M. S. Lam. Automatic extraction of object-
oriented component interfaces. In ISSTA ‘02, pages 218–228. ACM Press,
2002.

28. H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei. Mapo: Mining and rec-
ommending API usage patterns. In ECOOP ‘09, pages 318–343. Springer-
Verlag, 2009.

