How to Hack Java Like a Functional Programmer

Nels E. Beckman

March 22, 2009

Chapter 1

Introduction

The first question that may come to mind when reading the title of the paper
is, “why would I want to use Java to do something a fucntional language can
already do better?” Well, that’s probably not a bad question. In fact, these
days picking the language that makes you the most productive is becoming
easier and easier. Projects like Scala, and F# and SML.NET allow developpers
to write code in strongly-typed, functional languages while still taking advantage
of large existing code libraries and optimizing compilers, all thanks to the magic
of byte-code.

But the reality is, sometimes you just have to use a particular language.
Maybe it’s because you are working in a team of programmers who don’t know
your language of choice. Maybe you're working on an existing program written
in another language. The reasons very, but the end result is the same. In
this article, I take it as a given that you’re working in the Java programming
language because it’s the language I know best, but a lot of these techniques
could be used in other languages as well.

So the next question you might ask is, “why would I want to hack like a
functional programmer at all?” In other words, what are the benefits? Well,
there are numerous nice things about functional languages that can help make
us more productive as programmers. For one thing, functional programming
languages tend to have really nice tools for manipulating collections, like lists
and sets. Functions like fold and map are excellent general-purpose tools for
modifying collections because they are both powerful and succinct. Another
great thing about functional languages is their use of immutable data, which
helps eliminate a lot of “gotchas” that seem to happen when using languages
like C and Java. I don’t know about other programmers, but when I use imper-
ative languages I tend to spend a lot of time in the debugger, asking questions
like, “why did this variable change?” and“what code is modifying this variable
behind my back?” Because functional lanugages are structured around, well,
functions, the variables that affect the current state of the program are usually
on the stack, and the dataflow of the program is easy to follow and fix. There
are plenty of other great reasons to program functionally.

Finally, who am I targeting with this article? Probably the most honest
answer would be, myself three years ago. At that point in my life, I had just
learned SML after previously programming exclusively in OO languages. 1 was
amazed by their expressiveness. It also seemed like the code I wrote was fre-
quently correct the first time I ran it, and/or was easy to debug. At the same
time, all of the real research projects that I spent my time coding were in Java
and C++. In those projects, I found that even though I wasn’t using functional
languages, my code could benefit from many of their ideas. I picked up most
of the tricks and principles described in this article from friends, colleagues and
from source code that I had to read myself. A better answer to the question
is probably, anyone with an appreciation for the power of functional languages
who regularly uses Java or other Object-Oriented programming languages.

So, let’s get started!

Chapter 2

General Principles

In the first chapter, we discussed a couple of reasons why you might want to
write “functional” Java code. Now we’ll talk about how to do just that (and we’ll
talk more about why). In the next chapter, we will apply some of the general
techniques we learned in this chapter to the task of writing more convenient
collections and collection operations.

2.1 Be Immutable

The most important rule about writing functional code is to at all costs avoid
writing code that modifies memory in place. Generally, objects in your pro-
gram should be immutable and methods should really be functions over the
parameters they are passed and the receiver object.

This guideline immediately causes four questions to come to mind, which I
will answer in turn;

1. Why is immutability a good thing?
2. How do I make my objects immutable?

3. How do I accomplish the tasks I used to accomplish through effect-ful
operators now that I have removed them?

4. Aren’t there times when using effects really is a better way to go?

Why are immutable objects good? One of the things programmers first
note when using functional languages is the unusual behavior of variables. Vari-
ables are’t really variable. Variables are “bound” to one particular value, and
while I can create a new binding of the same variable, the original one still
exists.

let str = "Hi" in
let £ = (fn => str) in

let str = "Bye" in

In the above example, just because we have changed the value bound to the str
variable does not mean that we have changed what earlier code sees that refers
to the previous str variable. In other words, calling £() yields “Hi” rather than
“Bye.”

This behavior, while awkward at first, has great benefits when it comes to our
ability to understand the code that we or others have written. Functional code
is generally easier to understand because, as a result of the general immutability
of memory, the flow of data through your program becomes much more explicit.
If there is a problem with the data that appears in one part of a program, it
is generally quite easy to work backwards to the location in your code that
generated the bad data.

I like to illustrate this principle with two figures. In both figures, we imagine
the depth of a program’s stack graphed as a function over time (where higher
up means more calls deep into the stack). The first figure graphs code that is
using a mutable object o.

Stack Depth

Time

Let’s suppose we are currently using a debugger because we have noticed a
problem with our program’s behavior, and we have the debugger stopped at a
breakpoint at point B, which is in some function in our program. At this point,
we notice that o’s field £ has a value that it shouldn’t have. How did it get this
way? This object defines imperative methods, or methods that directly update
the field £, and f’s value was changed to the wrong value at point A on the
graph above.

Unfortunately, finding point A so that we can fix that code is quite difficult!
In fact, many of us have had this experience, and it usually results in our
shouting out, “how did the field get this value?” With a debugger it is very
easy to examine all of the stack frames above B up to C to see which values were
passed in to the current frame and how they were generated. But the current
value of £ was not generated somewhere above us in the stack. Rather it was
the result of a modifying method directly changing the heap in a way that we

could later observe. I have illustrated this “back channel” with a dotted line in
the above figure.

When we use immutable objects, the situation is more like the second illus-
tration.

Stack Depth

Time

When using immutable objects we are forced to return new objects whenever
a method creates some kind of result. Therefore data in functional programs
flows along the stack, as illustrated by the dotted arrows. In this case, if we
observe an incorrect value, we can use our debugger to step up the stack one
frame at a time. The erroneous value of £ will undoubtably have come from an
earlier method call, but finding which method call will be easy, as we can trace
the origin of that object back to some method’s returned value.

There’s one more great reason to use immutable objects! It makes writing
concurrent software much easier. This is true because many of the most insid-
eous difficulties associated with concurrent programming are due to the trouble
we must go through to protect state that multiple threads will read and at least
one will modify. If no thread can ever modify an object because it cannot be
modified, then access to that object never needs to be protected, for example,
with synchronized blocks.

How do I make my objects immutable? It takes two steps to define
immutable class c:

1. Mark all of c’s fields as final.
2. Make sure that any object referred to by a field of c is iteself immutable.

The first step is easy. Marking a field of a class as final assures that the
field’s value can only be set once, at construction time. After that attempting
to assign to the field will result in a compile-time error. This will automatically
prevent you from accidentally implementing mutating methods, like a setter,
later on.

Coincidentally, final is a great modifier, and one that all Java programmers
should understand well, as it holds different meanings in different situations.

(As testiment to the power of this keyword, the book “Hardcore Java” [5] has
dedicated and entire chapter to its various uses and benefits.) For our purposes,
it is enough to know that Java will now attempt to optimize your code, armed
with the knowledge that final fields will never change.

The seconds step is a little harder, and can be accomplished in a number
of ways, but by requiring transitively reachable objects to also be immutable,
we can ensure that an object will not be affected by the side-effects of other
objects. To do this, we can do a couple of things. First off, certain built-in
classes like Integer, String and Float are already immutable. There are also
some methods provided by the Java standard library which allow us to make
otherwise mutable objects into immutable ones. Next, if you are following my
advice, most or at least many of the classes you define should be immutable
as well. Finally, as a last resort, our class ¢ can carefully control access to an
object, and promise itself not to modify it.

Let’s see each of these ideas in an example. We’ll use the cannonical func-
tional programming example, a simple expression language. The IntValue class,
shown in Figure 2.1, is immutable because its only field points to an immutable
class from the standard library, Integer. Add, from Figure 2.1, is immutable
because its only fields are of type Expr, an interface that we have ourselves
have created and that we know to be implemented only be immutable classes.
Finally SuperAdd, which returns the sum of several expressions, takes two steps
to achieve immutability; since the List interface is not generally implemented
with immutable objects, we first take a defensive copy of the list passed into
the constructor. This ensures that if the original list is later modified by an-
other method, it won’t affect the value of our new object. Then, to prevent our
accidental modification, which could happen over time as the SuperAdd class
evolves, we wrap our new list by calling unmodifiableList, which will throw
an exception whenever a modifying method such as add is called.

class IntValue implements Expr {
private final Integer value;

public IntValue(int value) {
this.value = Integer.valueOf(value);

}

public int val() { returns value.intValue(); }

}

Figure 2.1: The IntValue class is immutable because its only field, which is itself
final, points to an immutable object defined by the Java standard library.

How do I accomplish the tasks I used to accomplish through effect-ful
operators now that I have removed them? Okay, so we’ve removed muta-

class Add implements Expr {
private final Expr el;
private final Expr e2;

public Add(Expr el, Expr e2) {
this.el = el;
this.e2 = e2;

}

public int val() { return el.val() + e2.val(Q); }

Figure 2.2: The Add class is immutable because its only fields point to objects
of type Expr, an interface that we have defined ourselves and know all subtypes
to be immutable.

ble methods from our class, but in order for an application to actual accomplish
anything, it’s going to have to transform data in some way. That’s mostly what
those old setter methods and other modifying methods were doing. How do we
perform that functionality without modifying methods? To do this, we’ll take
a page straight out of the functional programming playbook. We’ll take all our
methods that used to modify the receiver object directly and have them return
a new object. This object will be identical to the old one in every way, with the
exception of the field or fields that we would have directly modified with our
old method.

Let’s look at an example inspired by some great code that I saw in the
Polyglot Language Framework [7]. Polyglot contains a full Java typechecker,
and to this end defines a number of classes that are used to define Java abstract
syntax trees (ASTs). The following example defines the class that will be used
to represent Java’s conditional expression. (The conditional expression, whose
syntax is e, ? e; : e, is the expression form of an “if” statement, and is
covered in greater detail in Section 2.3.2.)

class ConditionalExpr implements Expr {
private final Expr guard;
private final Expr trueBranch;
private final Expr falseBranch;

private final Type type;

As you might anticipate, ConditionalExpr hold three expressions: one for
the boolean expression that is first evaluated, one to be evaluated in the event

class SuperAdd implements Expr {
private final List<Expr> es;

public SuperAdd(List<Expr> es) {
es = new ArrayList<Expr>(es);
this.es = Collections.unmodifiablelList(es);

}

public int val(Q) {
int result = 0;
for(Expr e : es)
result += e.val(Q);

return result;

Figure 2.3: The SuperAdd class is immutable because it creates a defensive
copy of the list that is passed into its constructor. Moreover, it uses the
unmodifiablelList utility method so if we accidentally try to modify it, an
exception will be thrown.

that the guard was true, and another to be executed in the even the guard was
false. It also holds a type. When the type-checker runs over a program’s AST, it
stores the type for each expression in the type field. This is great, except for one
problem; type-checking occurs many stages after the initial AST is constructed,
but all of the classes that make up Polyglot’s AST are immutable. How will we
assign a value to the type field when we compute it?

The answer, naturally, is that we won’t assign any value to the field, but
instead we’ll construct an entirely new conditional expression object whose only
difference is the value of the type field. Here’s how we do it. Our class will
define a getter method type but it will also define a “setter” method type which
given a Type returns a new ConditionalExpression.

class ConditionalExpr implements Expr {

private final Type type;
public Type type() { return type; }

public ConditionalExpr type(Type type) {
return new
ConditionalExpr (this.guard, this.trueBranch,
this. falseBranch, type);

While this may seem a little strange, returning a new object rather than
modifying the original object enormously simplifies the reasoning about your
program. The reason is that any given object may refer to other objects through
its fields, and certain invariants of that object may depend on the state of the
objects to which its fields refer. Any time we modify an object an object directly,
we risk invalidating invarints of other objects that refer to the mutated object,
unless we are very careful. By creating a new object, we do not have to worry
about objects whose invariants depended on the old onel!

Note that this has performance implications, both good and bad that we will
discuss in Section 2.1.1.

Aren’t there times when using effects really is a better way to go? Of
course functional code does not completely elliminate the idea of memory effects,
for the simple reason that they are useful, and in many cases are necessary for
getting certain jobs done. A computer is inherantly effect-ful. When we show
something on a computer screen, for example, we are affecting the real world
in a tangible way. And all computers work by effectively updating values held
at certain locations inside of memory. It’s just that these effects are hard for
our puny brains to think about, so better to do without them as much as our
existing programming abstractions allow.

That being said, when the problem you are solving demands the mutation
of memory, you should not be afraid to do so. Many effecient algorithms from
your favorite algorithms textbook [3] make use of mutable storage. As alluded to
above, if you are dealing with the outside world in any way, either by interacting
with a user, a file, or another machine, you will almost certainly have to write
effect-ful code, and that code may very well mutate memory in place. Ideally,
you should try to limit the effects of an operation to one part of a program,
and not let the effect-ful nature of some code “leak” out of its interface. For
example, many effecient aglorithms use mutable storage internally in such as
way that is not visible to their clients. Of course this sort of isolation may not
be possible.

If anything, the culture of functional programming should teach us that
many more things may be accomplished without mutating memory than we pre-
viously thought, and there are a large number of elegant and effecient functional
algorithms [6] that may be appropriate for any given programming challenge.

2.1.1 The Performance Costs of Immutability

Now we turn our attention to questions of performance. Once we start program-
ming with large numbers of immutable objects, are we not setting ourselves up

for decreased performance? It certainly would seem that way, given our sug-
gestion of creating “setter” methods which allocate new objects and copy the
contents of old ones. Will this style increase our rates of allocation and in turn
lead to decreased performance?

I think that to some extent, the answer is “yes.” Greater rates of allocation
can lead to decreased performance. But in my experience this seems to rarely
matter. Of course your millage may vary. But immutability can also open
up new avenues for performance gain, primarily through the addition of multi-
threading and object sharing.

Regarding the first point, there is plenty of folk wisdom describing when to
focus on performance improvements. Usually programmers agree that perfor-
mance improvements can wait until later. I tend to agree, mainly because the
majority of code that I write is not really performance intensive in any sense
of the word. I would suggest that this is more than likely true for the code
that you write as well, and I suspect that a large percentage of the code that
is written every year has very low performance needs. The great thing about
immutability is that it is an “optimization” of quality attributes that are almost
always important; readability, understand-ability and ease of maintenance.

But of course performance cannot always be added after the fact. Som-
times early architectural decisions will fundamentally limit the performance of
a particular application, and in these cases I can only offer some simple advice;
learn to recognize potential performance pitfalls, at early stages. If this advice
is weak, it is only a reflection of my own experience.

Yet I also believe that in many cases immutability can offer performance
improvements. The first way is by allowing for more object sharing. When
a program, or even a single class, has immutability as an invariant, we can
start sharing objects without concern for program correctness. What is object
sharing? It is when we take two separate objects that are both equal (in the
Object.equals sense of the word) and replace them with one object. The
Boolean class is a simple example of this concept. If we want to create an
object that wraps the primitive value true, we can do so in two ways using the
Boolean class, with a constructor or with the valueOf method:

Boolean b_1 = new Boolean(true);
Boolean b_2 = Boolean.valueOf(true);

The difference? The former approach must by definition allocate a new object,
while the latter almost certainly will not. The reason? Boolean is an immutable
class, and so every instance of the type that wraps the value true are equally
true. Therefore, the valueOf method will return one of two existing instances
every time it is called, preventing unncessary allocation. This technique is
known as the Flyweight pattern [4] in OO circles, and is built into many of
Java’s library types. (For example, all of the primitive wrapper types as well as
Strings, through a mechanism known as “string interning.”) Used aggressively,
this technique can greatly reduce the rate of allocation on certain object types.

The other reason that immutability can lead to increased performance is

10

because it can allow us to more easily parallelize our code. This is particularly
important as multi-core machines become a main-stay; we may all be writing a
lot of multi-threaded code in the near future.

Object immutability makes multi-threaded programming easier for the sim-
ple reason that it allows us to side-step the things that traditionally make multi-
threaded programming hard! When writing multi-threaded code, we typically
worry about locks for providing mutual exclusion, and monitors or semaphores
for inter-thread communication. But both of this tools are centered around
mutability. When programmers use locks, it is to enable the modification of
a memory location that multiple threads can concurrently access. If mem-
ory reachable from multiple threads is not to be modified, as is the case with
immutable objects, then there are no actions which must be protected with
mutual exclusion. In practice, it is much easier to write concurrent programs,
or to transform serial programs into concurrent ones, when the majority of the
operations in that program are performed on mutable data.

2.2 Interfaces to the Max

In this section we discuss interfaces. Interfaces are important, and as I will try
to explain, probably should be your go-to means of defining a type when you
are programming in Java.

2.2.1 When in Doubt: Interfaces and Delegation

For those writing Java who still have trouble designing their programs, I can offer
two pieces of advice that will make you code dramatically easier to understand:

1. Use Java interfaces rather than classes for typing annotations that form
part of a logical interface.

2. Accomplish code reuse through delegation rather than inheritance.

Let’s go through these two points in a little bit more detail. The first point
is a tad bit confusing because of it uses interface in two different ways, but the
basic idea is simple: Use Java interfaces in method parameters. In other words,
favor the former specification over the latter:

Iterable<String> intersection(Collection<String> c_1,
Collection<String> c_2);

ArraylList<String> intersection(ArrayList<String> al_1,
ArrayList<String> al_2);

In this case, most programmers would recognize the former as preferable due to
their familiarity with the Java collections library. What I want to stress though
is that this sort of reasoning should be use throughout your programs, even with
the types that you define yourself.

11

Interfaces are flexible. They define the bare minimum necessary to have a
type, and they force you as a programmer to think about exactly which services
a given object intends to provide to clients. By keeping interfaces small and
logically cohesive, we help promote reuse. Any given class will typically provide
a number of services, many of which are orthogonal. For example, the ability
to compare to other objects, the ability to posess an address in some coordinate
space, or the ability to be sent over a network. By recognizing these orthogonal
properties up front, we can define interfaces that capture those behaviors, and
later define methods that will act on all object, even if unrelated, that have
that particular behavior.

Interfaces also allow us to reimplement a functionaliy in a completely dif-
ferent way at a later point in time. If we must call a method that requires a
class, rather than an interface, and we want to perform the services provided
by that class in some completely different manner, our only choice is to extend
the class, an inelegant solution which requires us to inherit code that we want
nothing to do with.

Small, cohesive interfaces also allow us the posibilty to easily create annony-
mous inner classes, one-off classes that perform a particular task given a set of
variables in scope. Anonymous classes are the first-class functions of the Java
world, but really rely on small, well-defined interfaces, so that your code can
remain readable.

While others have made these same points more elegantly that I have [2,
item XXX], an interface-first style seems particularly well suited once we start
viewing Java’s types as ML data-types (Section 2.2.3).

The next point is probably a bit more controversial. I claim that you should
use delegation whenever possible rather than inheritance. But this point is
related to the first. Let me first show what I mean and then explain why I think
it is a good idea.

Let’s supposed you wanted to wanted to create a program with a resusable
algorithm framework, which allows later classes to implement the details of
each step of the algorithm. Common OO wisdom tells us that we shoud use the
Template Pattern [? , chapter XXX], as in the example lifted from Wikipedia [?
], shown in Figure 2.4.

The idea is, later on we can implement many different games, all of which
will share the same basic code for game execution. For example, we could
implement Monopoly, as shown in Figure 2.5.

2.2.2 Dynamic Dispatch as Pattern Matching
2.2.3 Datatypes

2.3 Expressions, Not Statements

2.3.1 The Poor-Man’s ‘Let’ Binding

12

let x = e_1 : C_1 in e_2 : C_2

new Object() {
C_1 eval(C_2 x) {
return e_2;
}
}.eval(e_1)

2.3.2 The Conditional Expression
2.3.3 Recursive Methods

2.4 Classes as Modules

Here’s a opportunity for Kevin’s “functor” trick.

public static <T> List<T>
createlList(Class<? extends List> cl, T... items) {
List<T> result = cl.newInstance();

for(T t : items) {
result.add(t);
}

return result;

2.5 Design Patterns?

The “FUNCTIONAL” design patterns are Builder, Adapter and its cousin Dec-
orator, Flyweight.

2.6 Good Things in Static Land

2.6.1 Static Methods, Not Fields!
2.6.2 Java Has Type Inference! Well, sort of...

13

Vii

* An abstract class that is common to several games in

o

which players play against the others
* playing at a given time.
:’r/
abstract class Game {
protected int playersCount;
abstract void initializeGame();
abstract void makePlay(int player);
abstract boolean endOfGame();

abstract void printWinner();

/* A template method : */

, but only one is

final void playOneGame (int playersCount) {

this.playersCount = playersCount;
initializeGame ();
int j = 0;
while (!endOfGame()) {
makePlay(j);
j = (+ 1) % playersCount;
}

printWinner ();

Figure 2.4: An abstract game with a template method
implement each step of the game-playing process.

14

. Concrete games must

class Monopoly extends Game {
/% Implementation of necessary concrete methods */

void initializeGame() {
/) ...
}

void makePlay(int player) {
/) ...
}

boolean endOfGame () {
J/ ...
}

void printWinner() {
// ...
}

/* Specific declarations for the Monopoly game. */

/) ..

Figure 2.5: A Monopoly game, which implements the steps of the Game template
it extends.

15

Chapter 3

Case Study: Collections

One of the first things I noticed about SML was how easily it allowed program-
mers to created and modify collections and other data structures. Java has a
large standard library full of well-written code, but sometimes its collections
just aren’t really all that convenient to use. In this section I will discuss a few
tricks that will help improve your use of collections.

3.0.3 Tuples are Your Friend

Tuples! Once you use them, you’ll wonder how you ever got by without them.
The ability to, say, return multiple arguments from a function without defining a
new data type is incredibly convenient. So convenient, in fact, that you wonder
why other languages don’t have them. Unfortunately, it’s true; Java has no
tuples, but that’s no reason why we can’t create our own.! Sure, this idea is
pretty simple, but one I've found remarkably useful.

Consider the code shown in Figure 3.1. This code is pretty simple, but
shows you a basic immutable pair. This code uses Java’s Generics to define a
pair of two objects fst and snd. The methods for returning these elements are
similarly named. (Many of the examples I show in this article use functional
naming conventions, rather than OO ones.)

The most interesting thing to note about this example is the static factory
method, which we will see in several other examples as well. The createPair
method can be used, like the constructor itself, to create a new Pair object from
its two constituents. However, thanks to a requirement in the Java specification,
the createPair method can be called without specifying the type arguments.
The same cannot be said for the the constructor. In fact, liberal use of static
factory methods can greatly decrease the number of required typing annotions.
In this example, creating a pair goes from:

Pair<Integer ,Boolean> p =

IThanks to Kevin Bierhoff for showing me this idea.

16

final class Pair<T,S> {
private final T fst;
private final S snd;

public Pair(T fst, S snd) {
this.fst = fst;
this.snd = snd;

}

public static <T,S>
Pair<T,S> createPair(T fst, S snd) {

return new Pair<T,S>(fst, snd);

}
public T fst() { return fst; }

public S snd() { return snd; }

Figure 3.1: A simple pair class in Java. Notice the static factory method, so
that clients do not have to specify type arguments to the constructor.

new Pair<Integer ,Boolean>(1l, true);

to

Pair<Integer ,Boolean> p = createPair(l, true);

And may also make it easier to modify the object later on, if object invariants
change.

There’s no reason why you can’t create larger tuples as well, but you’ll
probably need to define a new class for each one. I've used triples myself, but
no larger. Unfortunately, thanks to Java’s verbose typing syntax for Generics,
the typing annotations get pretty unwieldy quickly. In a language like SML,
this problem doesn’t exist because of type inference. Nonetheless, I still find
pairs to be convenient is many situations.

3.0.4 Intializing Collections

Java has very few collections that are actually part of the syntax itself. Okay,
really there’s just one: arrays. And while arrays are occasionally useful, it’s nice
to have other collections supported natively by the language itself. In functional
languages, lists are ubiquitous, but some languages even have buit-in syntax for
records and maps. Here are a couple of ways we can initialize collections as part
of larger expressions.

17

Using Varargs Java has var-args, and its high time we use them! One thing
that is extremely convenient in languages like SML is the existence of special
list syntax. At any point in code, I can directly create a list initialized to values
of my choosing. For instance,

let 1 = [1;2;3;4;5] in

allows me to create the list consisting of the first five natural numbers in or-
der. Using methods from the java.util.Collections class, we can create empty
lists, and singleton lists, two degenerate cases, corresponding to [] and [1] in
ML, but lists of size greater than one must be created using the add method.
Unfortunately, the signature of this method is,

boolean add(E o);

making it impossible to chain together several calls to add in a row.
Fortunately, we could use Java’s var-args functionality to achieve something
close to the level of succint-ness provided by SML. In Figure 3.2, you can see the
definition of the createList method. This trick comes to me via the AtomJava
source code [1], a good source for functional Java. The createList method
takes a variable number of arguments of type T, which are put into the array
items. This array is then used to construct a new ArrayList, which is returned.

public static <T> List<T> createList(T... items) {
List<T> result = new ArraylList<T>(items.length);
for(T t : items) {
result.add(t);
}

return result;

Figure 3.2: Var-args as a “poor man’s” list literal. The definition of the cre-
ateList method static factory method is shown here..

We would use this list as follows:

List<Integer> 1 = createlList(1,2,3,4,5);

Again, we because we've created a static factory method, it is not (usually)
necessary to pass explicit typing arguments. It might be a good idea to return
an immutable view of this list using the java.util.Collections.immutableList()
method. We cover immutability (and why this might be a good idea) in Sec-
tion 2.1.

Initialize Collections in Intializers This trick (and I purposely use the
word “trick”) should be shown with some caveats. It may may your code less
readable, and it is not in general safe to use with any class. In fact, when my

18

colleague Neel first showed me this trick,? it took my research group several min-
utes to figure out why it even worked. If that’s not a reason to take something
with a grain of salt, I'm not sure what is.

Nonetheless, occasionally you would like to create and initialize collections
all in one expression, and those collections (maps being the best example) are
not amenable to the var-args trick. (HERE’S WHERE I LOOK UP IN THE
SPEC WHEN THE INIT BLOCK IS EXECUTED). This trick takes advantage

of our old friend, the annonymous inner class:

foo(new HashMap<Integer,Boolean>(){{put(4, true);
put (5, false);1}1);

What’s going on here? Well, all in one expression, we are creating a new,
anonymous sub-class of the HashMap class, and in the constructor of this new
class, we call the put method, adding two items to the map. This works because
the implicit call to the super-constructor creates and initializes the map before
our new constructor code is called. Finally, in the super-expression, we pass
an instance of this new class to the foo method. We couldn’t do this merely
by stringing together calls to the put method on a regular map because that
methods return type is a boolean.

3.0.5 Roll Your Own Collection Operators

Now that we’ve got freshly initialized collections, let’s develop some of our
own FP-like collection utilities. Almost all functional languages take advantage
of higher-order functions by providing some neat collection utilities in their
libraries. Functions like map and fold are perfect examples of this. They allow
programmers to define functions that will then be executed on each element of a
collection. Java is missing first-class functions, but thanks to anonymous inner
classes and Java generics, we can achieve something remarkably similay, albeit
with somewhat uglier syntax. (Notice a reoccuring theme here?)

Let’s start with our own version of map, seen in Figure 3.3. The job of map
is to take a list and a function and apply that function to each element of the
list, putting the result of the function call into a new list that will be returned.
Since I can’t write a method that takes a map and a function, as functions aren’t
first-class, I instead define a new interface, Mapping. Mapping simply exists so
that clients who want to use the map method have a way of defining the function
that will be called on each element of the list. Looking at the implementation
of the map method, we see that we simply create a new list, call eval on each
element of the loop and put the result into a newly created list. Finally, notice
our use of the wildcard (?) which allows the mapping interface to operate on
lists that contain sub-types of the argument it expects.

Here’s how we might use our new method:

Util.map(l, new Mapping<Integer,Integer>(){

2This trick comes to me by way of Neelakantan Krishnashwami.

19

interface Mapping<I,O0> {
public 0 eval(I elem);
}

static <I,0> List<0> map(List<? extends I> 1list,
Mapping<I,0> fun) {
List<0> result = new ArrayList<O>(list.size());
for(I elem : list) {
result.add(fun.eval (elem));
}

return result;

Figure 3.3: A user-defined map function and the Mapping interface..

public Integer eval(Integer elem) {
return 2 * elem; }

s

The iter method defined in Figure 3.0.5 is extremely similar in its concep-
tion, but rather than creating a new list that is the result of applying the method
to each element, the purpose is to apply a method to each element purely for
its side-effect.

interface Action<I> {
public void eval(I elem);

¥

static <I> void iter(List<? extends I> list,
Action<I> fun) {
for(I elem : list) {
fun.eval(elem);

Figure 3.4: A user-defined iter function and the Action interface.

One might note that iter is conceptually quite similar to Java’s enhanced
for loop (in fact, it contains an enhanced for loop). Is this method redundant?
I would argue that iter can help avoid code duplication in situations where the
same opertation must be applied based on the contents of multiple collections.
Of course, this probably only matters if the task you intend to perform is non-
trivial.

How about other ways to inspect and create news lists? I'm glad you asked!

20

In Figure 3.0.5 I've recreated the classic list operations, head (hd), tail (t1) and
cons. These methods allows us to manipulate lists in an immutable fashion
which can be quite useful. There’s not too much to these methods except
pointing out that they can in fact be created.

static <T> T hd(List<? extends T> list) {
return list.get(0);
}

static <T> List<T> tl(List<? extends T> list) {
if(list.size() <=1)
return Collections.emptyList();
else
return
new ArrayList<T>(list.subList(l, list.size()-1));

}

static <T> List<T> cons(T head, List<? extends T> tail) {
final List<T> result = new ArraylList<T>(tail.size()+1);
result.add(head);
result.addAll(tail);
return result;

Figure 3.5: A collection of non-mutating list methods.

3.0.6 Impedence Matching with Simple Maps

21

Chapter 4

Conclusion

4.1 Further Reading

22

Bibliography

AtomJava. Atomjava. http://wasp.cs.washington.edu/wasp_atomjava.html.
Joshua Bloch. Effective Java (2nd Edition). Prentice Hall, 2008.

Thomas Cormen, Charles Leiserson, Ronald Rivest, and Clifford Stein. In-
troduction to Algorithms. McGraw-Hill Science/Engineering/Math, 2003.

Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley
Professional, 1994.

Robert Simmons Jr. Hardcore Java. O’Reilly Media, 2004.

Chris Okasaki. Purely Functional Data Structures. Cambridge University
Press, 1998.

Polyglot. Polyglot. http://www.cs.cornell.edu/projects/polyglot/.

23

