
Arkan∞id
Breaking Out of a Finite Space

Nels E. Beckman

School of Computer Science
Carnegie Mellon University

nbeckman@cs.cmu.edu

Abstract

Brick breaking games such as Breakout and Arkanoid
have existed for years. However, they have all contin-
ued to propagate one simple design flaw, possibly in the
name of “fun.” We call this mistake, “finity.” Each level
contains a finite number of bricks to break, and there
are only a finite number of levels. If in fact our paddle
is a spaceship, and the entire game is taking place in
outer-space, as Arkanoid’s cryptic story would have us
believe, then why is this universe finite? Physicists have
come to believe that the universe is infinite, or at least
really really big. Therefore, in this paper we present
Arkan∞id, the infinite brick breaking game, a game in
which the breaking of bricks will always reveal more
bricks.

Categories and Subject Descriptors K.3 [Computing
Milieux]: Computers and Education

General Terms Theory, Performance, Legal Aspects

Keywords Breakout, Arkanoid, Space, Paddle, Infin-
ity, Boring

1. Introduction

On May 13, 1976 Atari, Inc. shocked the world when
they releasedBreakout. Originally conceived as a single-
player version of their popularPongtitle, in Breakout
the player controls a single paddle at the bottom of the
screen, which they can move along the horizontal axis.
The goal of the game is to use the paddle to deflect a
bouncing ball upwards so that it will hit and thus de-
stroy the many bricks tiled at the top of the screen. Af-
ter all of the bricks are destroyed, the player proceeds
to the next level.

In 1986 the Taito Corporation released a follow up
game which revealed that what we had assumed up un-

til that point was a mere paddle was in fact a spaceship.
This spaceship, known as the “Vaus,” had escaped from
the doomed mother-ship, the “Arkanoid,” the title of the
game. The full story was presented in the opening dia-
log:

THE ERA AND TIME OF THIS STORY
IS UNKNOWN. AFTER THE MOTHERSHIP
“ARKANOID” WAS DESTROYED, A SPACE-
CRAFT “VAUS” SCRAMBLED AWAY FROM
IT. BUT ONLY TO BE TRAPPED IN SPACE
WARPED BY SOMEONE........

For a long time this proved satisfactory. Numerous
sequels, authorized and otherwise, were developed over
the years, each of which explored the Arkanoid mythol-
ogy in their own way. However, none these works di-
verged from the basic game-play model of the original
Breakout game. At some point, skeptical scientists be-
gan asking difficult questions. For one, why was it nec-
essary to tell the story in all caps? Also, is it not the case
that that the standard ellipsis uses three periods rather
than eight? But the most vexing issue, and the question
addressed by this work, is the following: If, as physi-
cists tell us, space is truly infinite, why does the game
take place in a series of levels each consisting of a finite
number of bricks? Should there be an infinite number
in each level? Moreover, is not the very notion of levels
inconsistent with an infinite universe?

We have concluded that the original Breakout and
the later Arkanoid consisted of a finite number of
bricks and levels only because of technical limitations
of the era. Follow-up games from later time periods
mistakenly assumed that the finite nature of the ear-
lier works was to be emulated. Arkan∞id rectifies this
long-standing error.

Figure 1. Initially, Arkan∞id looks like any other
Breakout clone.

Arkan∞id is an infinite game of outer-space brick
breaking. While the basic game-play is the same as
games like Arkanoid, the number of bricks that the
player can destroy is effectively limitless. At all times
more bricks await just off-screen. Arkan∞id is a game
written in Java for the Blackberry mobile phone plat-
form, and in this paper we describe its design and im-
plementation.

2. Arkan∞id

In this section we briefly describe the game-play of
Arkan∞id. Initially, Arkan∞id plays just like any
other Breakout clone, as you can see in Figure 1. A
ball is put into play and destroys each brick with which
it collides. However, things get interesting once the first
screen-full of bricks is eliminated. The camera scrolls
to reveal more bricks, as shown in Figure 2. When
those bricks are destroyed, the camera scrolls to reveal
yet more bricks. This same behavior continues to occur
until either a.)the player is bored or b.) the player’s cell
phone runs out of batteries.

While this may sounds incredibly boring, you are
wrong. Only an infinite number of bricks could accu-

Figure 2. When the lowest screen of bricks has been
broken, the ball moves up to a higher level of bricks
and the camera follows it, ad inifitum.

rately represent the vast cosmos. We have done this for
science not for you entertainment. What have you done
lately for science?

Arkanoid is currently available for free download1

on your Blackberry mobile device.

3. Implementation

In this section we describe the implementation of
Arkan∞id, starting with a discussion of the design
space.

3.1 Design Considerations

During the earliest stages of the design of Arkan∞id,
there were certain goals that we wanted to accomplish.
Here we briefly describe them.

The first and most important constraint was that, if
the plane of bricks was to scroll on indefinitely, we did
not want the amount of memory used to increase along
with it. The Blackberry platform has a relatively small
heap, and we could hardly say that Arkan∞id ran on

1http://a8.nelsbeckman.com/

forever if someone were able to leave the game running
for a few days and witness a heap overflow.

Which brings us to the second point. Due to the
infinite nature of our game, we would like gamers to be
able to “play” Arkan∞id even when they cannot focus
their attention on their phone. Therefore, our game
should somehow continue even when the user is, say,
talking on their phone, sleeping, or lifting weights. All
this should potentially occur with some loss of score,
so that players who decide never to rest, socialize or
exercise can be known as “hard-core.”

Finally, due to the decreased processing capabili-
ties of the Blackberry platform, we must ensure that
Arkan∞id is reasonably performant. This implies that
we must somehow scale down the number of bricks for
which collision detection will be performed, and the
number of bricks that are given to the underlying plat-
form to draw. If we naively perform collision detection
on ever single brick, or even just every single brick that
we have seen so far, we are doomed to poor perfor-
mance.

All of these factors lead to the eventual design.

3.2 The Implementation of Arkan∞id

Arkan∞id is implemented in the Java programming
language. The entire implementation of Arkan∞id
centers around the BrickBoard class. The BrickBoard
represents the infinite number of bricks that may ex-
ist in the game. Naturally, these bricks are created in
an on-demand fashion, and we attempt to remove any
overhead from bricks that have been destroyed.

A BrickBoard is essentially a linked-list of arrays.
Its internal structure, which we will now describe, is
illustrated in Figure 3. Each element in the linked-list
holds a byte array of size thirteen. One such array can
be used to represent one screen-full of bricks, if we use
just one bit (on/off) to represent a brick. Each screen-
full also has a pointer to the screen-full before it and
after it, as well as a 64-bit integer holding the logical
position on the y axis of the bottom of that particular
screen-full. The next pointer of the last screen-full will
always be set tonull. Gradually, the linked list of brick
arrays will be extended, one screen-full at a time, by
dynamically allocating a new array, to go at the end of
the list. However, this action will only be performed the
first time that the ball passes into the logical coordinate
space beyond the last allocated screen-full. In this way,

. . .

null

next

next

nextprev

prev

height : longEmptyScreenful

Screenful

logicalYOfBottom : long

logicalYOfBottom : long

bricks : byte[13]

Figure 3. The design of the BrickBoard class, which
holds a linked list of byte arrays, each of which repre-
sents a screen-full of bricks. At the bottom, one object
represents all of the “empty space” at the bottom of the
stack of bricks.

we will only allocate memory to represent the bricks
when necessary.

Still, if we were using an object to hold every screen-
full of bricks, even a very small object, eventually we
would exhaust our heap space, therefore spoiling the
illusion of infinity. For this reason, the BrickBoard oc-
casionally performs a “garbage collection” operation,
during which the number of objects required to repre-
sent all screen-fulls empty of bricks will be reduced to a
constant number. Whenever garbage collection is per-
formed, starting from the beginning of the linked list,
we collapse all screen-full objects whose arrays contain
all zeros into one object of type EmptyScreenful. While
it is possible for one brick to prevent a larger number
of screen-fulls from being garbage collected, in prac-
tice we found that all lower bricks will eventually be
eliminated, thus freeing up the available object.

We also have to find a way to reduce the number
of bricks upon which collision detection will be per-
formed. In Arkan∞id we track the ball with a camera,
which ensures that the ball could only ever possibly
collide with bricks that are on-screen. Therefore, our
implementation will simply find the two screen-fulls of
bricks that could possibly be on screen and only draw
and perform collision detection on those two screen-
fulls of bricks.

In practice, this design of the BrickBoard class al-
lows for excellent performance and the ability for infi-
nite bricks to exist with only a constant run-time over-
head.

Finally, in order to allow gamers to play without
actually devoting all of their attention to the cell phone,
there is no limit on the number of balls that can be lost.
Each time a ball goes past the paddle, a new ball is put
into play, although we keep track of the number of balls
the player has lost. Hardcore gamers will invariably
brag about the low number of balls that they have lost
while playing Arkan∞id and berate other “n00bs” for
their inferior skillZ.

4. Discussion

In the end, it is worth discussing whether or not Arkan∞id
really is aninfinite game of brick breaking. Clearly it
can last a long time, but forever? Given that we only use
a constant amount of overhead to represent the bricks
(one object for all of the empty screen-fulls and a some
small number for the bricks that have not yet been de-
stroyed) the only true limit that we must be wary of the
position on the y axis of the ball. Since we are using a
64 bit integer to represent this position, we must con-
sider the fact that eventually this integer will overflow,
resulting in untold havoc. Let us consider how long we
can play before this happens.

In Arkan∞id the ball will always move at a fixed
vertical velocity, 5 pixels every 50 milliseconds. Our
initial implementation used a 32 bit integer to represent
the ball’s vertical position. However, according to the
following math;

232 pixels
(

5 pixels
.05 s

) ×

1

60 s
m × 60 m

h × 24 h
d

= 497 days

a ball moving upwards would only need 497 days of
play time to overflow a 32 bit integer. Clearly this is
a limitation in the implementation that could be ob-

served. It was thus that we decided to use a 32 bit inte-
ger. This way, and according to the following math;

264 pixels

(5 pixels
.05 s)

×
1

60
s
m×60

m
h ×24

h
d×365

d
y

=

58 Billion years

58 billion years is certainly much more respectable.
For all we know, 58 billion years might be an infinite
amount of time. I have not yet been able to prove other-
wise. As you may notice, all of the numbers represent
just the amount of time it takes for the ball to go from
the absolute bottom of the logical y coordinates to the
absolute top. In reality, in order to get all the way to the
top of the logical coordinates, the ball will have to go
up and down an extremely large number of times so as
to knock out earlier bricks. Therefore the actual amount
of play time will be much greater than 58 billion years.

However, for math nerds who claim that we can do
better, we have saved a tasty slice for future work.
Eventually, we plan to use Java’s BigInteger, an ob-
ject that holds integers of arbitrary precision, to rep-
resent the logical address of the ball in the y coordinate
plane. Then the maximum height the ball could reach
would only be limited by the amount of heap space on
your device. Since my Blackberry Pearl has 40MB of
heap space, this means we could address approximately
25640,602,000 before we would have to stop playing. Un-
fortunately, such a large number causes my calculator
to overflow. Sad face. So I am going to assume that it
would be a really long time.

5. Conclusion

In this paper we presented the design and implementa-
tion of Arkan∞id, the realization of a line of work that
began with 1976’s Breakout. We argue that since the
universe is infinite, or at least really really big, the idea
of an outer-space brick breaking game in which there
are only a finite number of bricks is patently ridiculous.
While early brick breaking games were limited by tech-
nological constraints, we believe that later brick break-
ing games mistakenly copied this deficiency for reasons
of “fun.” With Arkan∞id have remedied the situation,
creating an outer-space brick breaking game that need
never end. We expect this sort of infinite playability to
become the norm in future games. Earth, you’re wel-
come.

